Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4rexfrabdioph Structured version   Unicode version

Theorem 4rexfrabdioph 30971
Description: Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1  |-  M  =  ( N  +  1 )
rexfrabdioph.2  |-  L  =  ( M  +  1 )
rexfrabdioph.3  |-  K  =  ( L  +  1 )
rexfrabdioph.4  |-  J  =  ( K  +  1 )
Assertion
Ref Expression
4rexfrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph }  e.  (Dioph `  J ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  E. x  e.  NN0  E. y  e. 
NN0  ph }  e.  (Dioph `  N ) )
Distinct variable groups:    u, t,
v, w, x, y, J    t, K, u, v, w, x, y   
t, L, u, v, w, x, y    t, M, u, v, w, x, y    t, N, u, v, w, x, y    ph, t
Allowed substitution hints:    ph( x, y, w, v, u)

Proof of Theorem 4rexfrabdioph
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 2sbcrex 30957 . . . . . . . 8  |-  ( [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. E. x  e.  NN0  E. y  e.  NN0  ph  <->  E. x  e.  NN0  [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. E. y  e.  NN0  ph )
2 2sbcrex 30957 . . . . . . . . 9  |-  ( [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. E. y  e.  NN0  ph  <->  E. y  e.  NN0  [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph )
32rexbii 2956 . . . . . . . 8  |-  ( E. x  e.  NN0  [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. E. y  e.  NN0  ph  <->  E. x  e.  NN0  E. y  e.  NN0  [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph )
41, 3bitri 249 . . . . . . 7  |-  ( [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. E. x  e.  NN0  E. y  e.  NN0  ph  <->  E. x  e.  NN0  E. y  e. 
NN0  [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. ph )
54sbcbii 3380 . . . . . 6  |-  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. E. x  e.  NN0  E. y  e. 
NN0  ph  <->  [. ( a  |`  ( 1 ... N
) )  /  u ]. E. x  e.  NN0  E. y  e.  NN0  [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph )
6 sbc2rex 30960 . . . . . 6  |-  ( [. ( a  |`  (
1 ... N ) )  /  u ]. E. x  e.  NN0  E. y  e.  NN0  [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. ph  <->  E. x  e.  NN0  E. y  e.  NN0  [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. ph )
75, 6bitri 249 . . . . 5  |-  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. E. x  e.  NN0  E. y  e. 
NN0  ph  <->  E. x  e.  NN0  E. y  e.  NN0  [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. ph )
87a1i 11 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... L
) )  ->  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. E. x  e.  NN0  E. y  e. 
NN0  ph  <->  E. x  e.  NN0  E. y  e.  NN0  [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. ph ) )
98rabbiia 3095 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... L
) )  |  [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. E. x  e.  NN0  E. y  e. 
NN0  ph }  =  {
a  e.  ( NN0 
^m  ( 1 ... L ) )  |  E. x  e.  NN0  E. y  e.  NN0  [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. ph }
10 rexfrabdioph.2 . . . . . . 7  |-  L  =  ( M  +  1 )
11 rexfrabdioph.1 . . . . . . . . 9  |-  M  =  ( N  +  1 )
12 nn0p1nn 10831 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
1311, 12syl5eqel 2546 . . . . . . . 8  |-  ( N  e.  NN0  ->  M  e.  NN )
1413peano2nnd 10548 . . . . . . 7  |-  ( N  e.  NN0  ->  ( M  +  1 )  e.  NN )
1510, 14syl5eqel 2546 . . . . . 6  |-  ( N  e.  NN0  ->  L  e.  NN )
1615nnnn0d 10848 . . . . 5  |-  ( N  e.  NN0  ->  L  e. 
NN0 )
1716adantr 463 . . . 4  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph }  e.  (Dioph `  J ) )  ->  L  e.  NN0 )
18 sbcrot3 30964 . . . . . . . . . 10  |-  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph  <->  [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. ph )
19 sbcrot3 30964 . . . . . . . . . . . . 13  |-  ( [. ( t `  J
)  /  y ]. [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. ph  <->  [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. [. ( t `  J
)  /  y ]. ph )
2019sbcbii 3380 . . . . . . . . . . . 12  |-  ( [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. ph  <->  [. ( t `  K
)  /  x ]. [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. [. ( t `  J
)  /  y ]. ph )
21 sbcrot3 30964 . . . . . . . . . . . 12  |-  ( [. ( t `  K
)  /  x ]. [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. [. ( t `  J
)  /  y ]. ph  <->  [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. ph )
2220, 21bitri 249 . . . . . . . . . . 11  |-  ( [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. ph  <->  [. ( a `  M
)  /  v ]. [. ( a `  L
)  /  w ]. [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. ph )
2322sbcbii 3380 . . . . . . . . . 10  |-  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph  <->  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph )
2418, 23bitr3i 251 . . . . . . . . 9  |-  ( [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph  <->  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph )
2524sbcbii 3380 . . . . . . . 8  |-  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph )
26 reseq1 5256 . . . . . . . . . 10  |-  ( a  =  ( t  |`  ( 1 ... L
) )  ->  (
a  |`  ( 1 ... N ) )  =  ( ( t  |`  ( 1 ... L
) )  |`  (
1 ... N ) ) )
2726sbccomieg 30966 . . . . . . . . 9  |-  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph  <->  [. ( ( t  |`  ( 1 ... L ) )  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph )
28 fzssp1 11730 . . . . . . . . . . . . 13  |-  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) )
2911oveq2i 6281 . . . . . . . . . . . . 13  |-  ( 1 ... M )  =  ( 1 ... ( N  +  1 ) )
3028, 29sseqtr4i 3522 . . . . . . . . . . . 12  |-  ( 1 ... N )  C_  ( 1 ... M
)
31 fzssp1 11730 . . . . . . . . . . . . 13  |-  ( 1 ... M )  C_  ( 1 ... ( M  +  1 ) )
3210oveq2i 6281 . . . . . . . . . . . . 13  |-  ( 1 ... L )  =  ( 1 ... ( M  +  1 ) )
3331, 32sseqtr4i 3522 . . . . . . . . . . . 12  |-  ( 1 ... M )  C_  ( 1 ... L
)
3430, 33sstri 3498 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  ( 1 ... L
)
35 resabs1 5290 . . . . . . . . . . 11  |-  ( ( 1 ... N ) 
C_  ( 1 ... L )  ->  (
( t  |`  (
1 ... L ) )  |`  ( 1 ... N
) )  =  ( t  |`  ( 1 ... N ) ) )
36 dfsbcq 3326 . . . . . . . . . . 11  |-  ( ( ( t  |`  (
1 ... L ) )  |`  ( 1 ... N
) )  =  ( t  |`  ( 1 ... N ) )  ->  ( [. (
( t  |`  (
1 ... L ) )  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph ) )
3734, 35, 36mp2b 10 . . . . . . . . . 10  |-  ( [. ( ( t  |`  ( 1 ... L
) )  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... L ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph )
38 fveq1 5847 . . . . . . . . . . . . 13  |-  ( a  =  ( t  |`  ( 1 ... L
) )  ->  (
a `  M )  =  ( ( t  |`  ( 1 ... L
) ) `  M
) )
3938sbccomieg 30966 . . . . . . . . . . . 12  |-  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( ( t  |`  ( 1 ... L ) ) `
 M )  / 
v ]. [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph )
40 elfz1end 11718 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
4113, 40sylib 196 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  M  e.  ( 1 ... M
) )
4233, 41sseldi 3487 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  M  e.  ( 1 ... L
) )
43 fvres 5862 . . . . . . . . . . . . . 14  |-  ( M  e.  ( 1 ... L )  ->  (
( t  |`  (
1 ... L ) ) `
 M )  =  ( t `  M
) )
44 dfsbcq 3326 . . . . . . . . . . . . . 14  |-  ( ( ( t  |`  (
1 ... L ) ) `
 M )  =  ( t `  M
)  ->  ( [. ( ( t  |`  ( 1 ... L
) ) `  M
)  /  v ]. [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph ) )
4542, 43, 443syl 20 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... L
) ) `  M
)  /  v ]. [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( a `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph ) )
46 vex 3109 . . . . . . . . . . . . . . . . 17  |-  t  e. 
_V
4746resex 5305 . . . . . . . . . . . . . . . 16  |-  ( t  |`  ( 1 ... L
) )  e.  _V
48 fveq1 5847 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( t  |`  ( 1 ... L
) )  ->  (
a `  L )  =  ( ( t  |`  ( 1 ... L
) ) `  L
) )
4948sbcco3g 3838 . . . . . . . . . . . . . . . 16  |-  ( ( t  |`  ( 1 ... L ) )  e.  _V  ->  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( ( t  |`  ( 1 ... L ) ) `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph ) )
5047, 49ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( ( t  |`  ( 1 ... L ) ) `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph )
51 elfz1end 11718 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  NN  <->  L  e.  ( 1 ... L
) )
5215, 51sylib 196 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  L  e.  ( 1 ... L
) )
53 fvres 5862 . . . . . . . . . . . . . . . 16  |-  ( L  e.  ( 1 ... L )  ->  (
( t  |`  (
1 ... L ) ) `
 L )  =  ( t `  L
) )
54 dfsbcq 3326 . . . . . . . . . . . . . . . 16  |-  ( ( ( t  |`  (
1 ... L ) ) `
 L )  =  ( t `  L
)  ->  ( [. ( ( t  |`  ( 1 ... L
) ) `  L
)  /  w ]. [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. ph  <->  [. ( t `  L
)  /  w ]. [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. ph ) )
5552, 53, 543syl 20 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... L
) ) `  L
)  /  w ]. [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. ph  <->  [. ( t `  L
)  /  w ]. [. ( t `  K
)  /  x ]. [. ( t `  J
)  /  y ]. ph ) )
5650, 55syl5bb 257 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( t `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph ) )
5756sbcbidv 3379 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( t `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph ) )
5845, 57bitrd 253 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... L
) ) `  M
)  /  v ]. [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( t `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph ) )
5939, 58syl5bb 257 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. ph  <->  [. ( t `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph ) )
6059sbcbidv 3379 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... L ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph ) )
6137, 60syl5bb 257 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... L
) )  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... L ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph ) )
6227, 61syl5bb 257 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. [. ( t `
 K )  /  x ]. [. ( t `
 J )  / 
y ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph ) )
6325, 62syl5bb 257 . . . . . . 7  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph ) )
6463rabbidv 3098 . . . . . 6  |-  ( N  e.  NN0  ->  { t  e.  ( NN0  ^m  ( 1 ... J
) )  |  [. ( t  |`  (
1 ... L ) )  /  a ]. [. (
t `  K )  /  x ]. [. (
t `  J )  /  y ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( a `
 L )  /  w ]. ph }  =  { t  e.  ( NN0  ^m  ( 1 ... J ) )  |  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph } )
6564eleq1d 2523 . . . . 5  |-  ( N  e.  NN0  ->  ( { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. ph }  e.  (Dioph `  J )  <->  { t  e.  ( NN0  ^m  (
1 ... J ) )  |  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph }  e.  (Dioph `  J ) ) )
6665biimpar 483 . . . 4  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph }  e.  (Dioph `  J ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... J ) )  |  [. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. ph }  e.  (Dioph `  J ) )
67 rexfrabdioph.3 . . . . 5  |-  K  =  ( L  +  1 )
68 rexfrabdioph.4 . . . . 5  |-  J  =  ( K  +  1 )
6967, 682rexfrabdioph 30969 . . . 4  |-  ( ( L  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... L
) )  /  a ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. ph }  e.  (Dioph `  J ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... L ) )  |  E. x  e. 
NN0  E. y  e.  NN0  [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph }  e.  (Dioph `  L )
)
7017, 66, 69syl2anc 659 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph }  e.  (Dioph `  J ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... L ) )  |  E. x  e. 
NN0  E. y  e.  NN0  [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. [. (
a `  L )  /  w ]. ph }  e.  (Dioph `  L )
)
719, 70syl5eqel 2546 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph }  e.  (Dioph `  J ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... L ) )  |  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. E. x  e.  NN0  E. y  e.  NN0  ph }  e.  (Dioph `  L )
)
7211, 102rexfrabdioph 30969 . 2  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( a `  L )  /  w ]. E. x  e.  NN0  E. y  e.  NN0  ph }  e.  (Dioph `  L )
)  ->  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  E. w  e.  NN0  E. x  e.  NN0  E. y  e.  NN0  ph }  e.  (Dioph `  N ) )
7371, 72syldan 468 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... J ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. [. ( t `  K )  /  x ]. [. ( t `  J )  /  y ]. ph }  e.  (Dioph `  J ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  E. x  e.  NN0  E. y  e. 
NN0  ph }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   E.wrex 2805   {crab 2808   _Vcvv 3106   [.wsbc 3324    C_ wss 3461    |` cres 4990   ` cfv 5570  (class class class)co 6270    ^m cmap 7412   1c1 9482    + caddc 9484   NNcn 10531   NN0cn0 10791   ...cfz 11675  Diophcdioph 30927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-hash 12388  df-mzpcl 30895  df-mzp 30896  df-dioph 30928
This theorem is referenced by:  6rexfrabdioph  30972
  Copyright terms: Public domain W3C validator