MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4exmid Structured version   Unicode version

Theorem 4exmid 939
Description: The disjunction of the four possible combinations of two wffs and their negations is always true. (Contributed by David Abernethy, 28-Jan-2014.)
Assertion
Ref Expression
4exmid  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  -.  ps )
)  \/  ( (
ph  /\  -.  ps )  \/  ( ps  /\  -.  ph ) ) )

Proof of Theorem 4exmid
StepHypRef Expression
1 exmid 415 . 2  |-  ( (
ph 
<->  ps )  \/  -.  ( ph  <->  ps ) )
2 dfbi3 893 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  /\  ps )  \/  ( -.  ph  /\  -.  ps ) ) )
3 xor 891 . . 3  |-  ( -.  ( ph  <->  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( ps  /\  -.  ph )
) )
42, 3orbi12i 521 . 2  |-  ( ( ( ph  <->  ps )  \/  -.  ( ph  <->  ps )
)  <->  ( ( (
ph  /\  ps )  \/  ( -.  ph  /\  -.  ps ) )  \/  ( ( ph  /\  -.  ps )  \/  ( ps  /\  -.  ph )
) ) )
51, 4mpbi 208 1  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  -.  ps )
)  \/  ( (
ph  /\  -.  ps )  \/  ( ps  /\  -.  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator