MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cycl2vnunb Structured version   Visualization version   Unicode version

Theorem 4cycl2vnunb 25738
Description: In a 4-cycle, two distinct vertices have not a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Nov-2017.)
Assertion
Ref Expression
4cycl2vnunb  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  ->  -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  ran  E )
Distinct variable groups:    x, A    x, B    x, C    x, E    x, V
Allowed substitution hint:    D( x)

Proof of Theorem 4cycl2vnunb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 4cycl2v2nb 25737 . 2  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E ) )
2 preq2 4051 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  { A ,  x }  =  { A ,  B }
)
3 preq1 4050 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  { x ,  C }  =  { B ,  C }
)
42, 3preq12d 4058 . . . . . . . . . . . . . . 15  |-  ( x  =  B  ->  { { A ,  x } ,  { x ,  C } }  =  { { A ,  B } ,  { B ,  C } } )
54sseq1d 3458 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  <->  { { A ,  B } ,  { B ,  C } }  C_  ran  E ) )
65anbi1d 710 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
( { { A ,  x } ,  {
x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_ 
ran  E )  <->  ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E ) ) )
7 neeq1 2685 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
x  =/=  y  <->  B  =/=  y ) )
86, 7anbi12d 716 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  x  =/=  y
)  <->  ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  /\  B  =/=  y ) ) )
9 preq2 4051 . . . . . . . . . . . . . . . 16  |-  ( y  =  D  ->  { A ,  y }  =  { A ,  D }
)
10 preq1 4050 . . . . . . . . . . . . . . . 16  |-  ( y  =  D  ->  { y ,  C }  =  { D ,  C }
)
119, 10preq12d 4058 . . . . . . . . . . . . . . 15  |-  ( y  =  D  ->  { { A ,  y } ,  { y ,  C } }  =  { { A ,  D } ,  { D ,  C } } )
1211sseq1d 3458 . . . . . . . . . . . . . 14  |-  ( y  =  D  ->  ( { { A ,  y } ,  { y ,  C } }  C_ 
ran  E  <->  { { A ,  D } ,  { D ,  C } }  C_  ran  E ) )
1312anbi2d 709 . . . . . . . . . . . . 13  |-  ( y  =  D  ->  (
( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_ 
ran  E )  <->  ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E ) ) )
14 neeq2 2686 . . . . . . . . . . . . 13  |-  ( y  =  D  ->  ( B  =/=  y  <->  B  =/=  D ) )
1513, 14anbi12d 716 . . . . . . . . . . . 12  |-  ( y  =  D  ->  (
( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  B  =/=  y
)  <->  ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E
)  /\  B  =/=  D ) ) )
168, 15rspc2ev 3160 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  D  e.  V  /\  ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  /\  B  =/=  D ) )  ->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  x  =/=  y
) )
17163expa 1207 . . . . . . . . . 10  |-  ( ( ( B  e.  V  /\  D  e.  V
)  /\  ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E
)  /\  B  =/=  D ) )  ->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  /\  x  =/=  y ) )
1817expcom 437 . . . . . . . . 9  |-  ( ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  /\  B  =/=  D )  ->  (
( B  e.  V  /\  D  e.  V
)  ->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  /\  x  =/=  y ) ) )
1918ex 436 . . . . . . . 8  |-  ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E
)  ->  ( B  =/=  D  ->  ( ( B  e.  V  /\  D  e.  V )  ->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  x  =/=  y
) ) ) )
2019com13 83 . . . . . . 7  |-  ( ( B  e.  V  /\  D  e.  V )  ->  ( B  =/=  D  ->  ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  ->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  /\  x  =/=  y ) ) ) )
21203impia 1204 . . . . . 6  |-  ( ( B  e.  V  /\  D  e.  V  /\  B  =/=  D )  -> 
( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  ->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  /\  x  =/=  y ) ) )
2221impcom 432 . . . . 5  |-  ( ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D ) )  ->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  x  =/=  y
) )
23 rexnal 2835 . . . . . 6  |-  ( E. x  e.  V  -.  A. y  e.  V  ( ( { { A ,  x } ,  {
x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_ 
ran  E )  ->  x  =  y )  <->  -. 
A. x  e.  V  A. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  ->  x  =  y ) )
24 rexnal 2835 . . . . . . . 8  |-  ( E. y  e.  V  -.  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  ->  x  =  y )  <->  -.  A. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  ->  x  =  y ) )
25 annim 427 . . . . . . . . . 10  |-  ( ( ( { { A ,  x } ,  {
x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_ 
ran  E )  /\  -.  x  =  y
)  <->  -.  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  ->  x  =  y ) )
26 df-ne 2623 . . . . . . . . . . . 12  |-  ( x  =/=  y  <->  -.  x  =  y )
2726bicomi 206 . . . . . . . . . . 11  |-  ( -.  x  =  y  <->  x  =/=  y )
2827anbi2i 699 . . . . . . . . . 10  |-  ( ( ( { { A ,  x } ,  {
x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_ 
ran  E )  /\  -.  x  =  y
)  <->  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  /\  x  =/=  y ) )
2925, 28bitr3i 255 . . . . . . . . 9  |-  ( -.  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  ->  x  =  y )  <->  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  /\  x  =/=  y ) )
3029rexbii 2888 . . . . . . . 8  |-  ( E. y  e.  V  -.  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  ->  x  =  y )  <->  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  x  =/=  y
) )
3124, 30bitr3i 255 . . . . . . 7  |-  ( -. 
A. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  ->  x  =  y )  <->  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  x  =/=  y
) )
3231rexbii 2888 . . . . . 6  |-  ( E. x  e.  V  -.  A. y  e.  V  ( ( { { A ,  x } ,  {
x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_ 
ran  E )  ->  x  =  y )  <->  E. x  e.  V  E. y  e.  V  (
( { { A ,  x } ,  {
x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_ 
ran  E )  /\  x  =/=  y ) )
3323, 32bitr3i 255 . . . . 5  |-  ( -. 
A. x  e.  V  A. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  ->  x  =  y )  <->  E. x  e.  V  E. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  /\  x  =/=  y
) )
3422, 33sylibr 216 . . . 4  |-  ( ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D ) )  ->  -.  A. x  e.  V  A. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  ->  x  =  y ) )
3534intnand 926 . . 3  |-  ( ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D ) )  ->  -.  ( E. x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  A. x  e.  V  A. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A , 
y } ,  {
y ,  C } }  C_  ran  E )  ->  x  =  y ) ) )
36 preq2 4051 . . . . . 6  |-  ( x  =  y  ->  { A ,  x }  =  { A ,  y }
)
37 preq1 4050 . . . . . 6  |-  ( x  =  y  ->  { x ,  C }  =  {
y ,  C }
)
3836, 37preq12d 4058 . . . . 5  |-  ( x  =  y  ->  { { A ,  x } ,  { x ,  C } }  =  { { A ,  y } ,  { y ,  C } } )
3938sseq1d 3458 . . . 4  |-  ( x  =  y  ->  ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  <->  { { A , 
y } ,  {
y ,  C } }  C_  ran  E ) )
4039reu4 3231 . . 3  |-  ( E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  ran  E  <->  ( E. x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  A. x  e.  V  A. y  e.  V  ( ( { { A ,  x } ,  { x ,  C } }  C_  ran  E  /\  { { A ,  y } ,  { y ,  C } }  C_  ran  E
)  ->  x  =  y ) ) )
4135, 40sylnibr 307 . 2  |-  ( ( ( { { A ,  B } ,  { B ,  C } }  C_  ran  E  /\  { { A ,  D } ,  { D ,  C } }  C_  ran  E )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D ) )  ->  -.  E! x  e.  V  { { A ,  x } ,  {
x ,  C } }  C_  ran  E )
421, 41stoic3 1659 1  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E )  /\  ( B  e.  V  /\  D  e.  V  /\  B  =/=  D
) )  ->  -.  E! x  e.  V  { { A ,  x } ,  { x ,  C } }  C_  ran  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737   E!wreu 2738    C_ wss 3403   {cpr 3969   ran crn 4834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-v 3046  df-un 3408  df-in 3410  df-ss 3417  df-sn 3968  df-pr 3970
This theorem is referenced by:  n4cyclfrgra  25739  4cyclusnfrgra  25740
  Copyright terms: Public domain W3C validator