MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cases Structured version   Visualization version   Unicode version

Theorem 4cases 964
Description: Inference eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 25-Oct-2003.)
Hypotheses
Ref Expression
4cases.1  |-  ( (
ph  /\  ps )  ->  ch )
4cases.2  |-  ( (
ph  /\  -.  ps )  ->  ch )
4cases.3  |-  ( ( -.  ph  /\  ps )  ->  ch )
4cases.4  |-  ( ( -.  ph  /\  -.  ps )  ->  ch )
Assertion
Ref Expression
4cases  |-  ch

Proof of Theorem 4cases
StepHypRef Expression
1 4cases.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
2 4cases.3 . . 3  |-  ( ( -.  ph  /\  ps )  ->  ch )
31, 2pm2.61ian 807 . 2  |-  ( ps 
->  ch )
4 4cases.2 . . 3  |-  ( (
ph  /\  -.  ps )  ->  ch )
5 4cases.4 . . 3  |-  ( ( -.  ph  /\  -.  ps )  ->  ch )
64, 5pm2.61ian 807 . 2  |-  ( -. 
ps  ->  ch )
73, 6pm2.61i 169 1  |-  ch
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-an 378
This theorem is referenced by:  4casesdan  965  suc11reg  8142  hasheqf1oi  12572  fvprmselgcd1  15082  axlowdimlem15  25065  sizeusglecusg  25293  hashnbgravdg  25720  ax12eq  32576  ax12el  32577  cdleme27a  34005
  Copyright terms: Public domain W3C validator