Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cases Structured version   Visualization version   Unicode version

Theorem 4cases 964
 Description: Inference eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 25-Oct-2003.)
Hypotheses
Ref Expression
4cases.1
4cases.2
4cases.3
4cases.4
Assertion
Ref Expression
4cases

Proof of Theorem 4cases
StepHypRef Expression
1 4cases.1 . . 3
2 4cases.3 . . 3
31, 2pm2.61ian 807 . 2
4 4cases.2 . . 3
5 4cases.4 . . 3
64, 5pm2.61ian 807 . 2
73, 6pm2.61i 169 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 376 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 190  df-an 378 This theorem is referenced by:  4casesdan  965  suc11reg  8142  hasheqf1oi  12572  fvprmselgcd1  15082  axlowdimlem15  25065  sizeusglecusg  25293  hashnbgravdg  25720  ax12eq  32576  ax12el  32577  cdleme27a  34005
 Copyright terms: Public domain W3C validator