Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem12a Structured version   Unicode version

Theorem 4atlem12a 33617
Description: Lemma for 4at 33620. Substitute  T for  P. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4atlem12a  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( P  .<_  ( ( T  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  =  ( ( T 
.\/  U )  .\/  ( V  .\/  W ) ) ) )

Proof of Theorem 4atlem12a
StepHypRef Expression
1 simp11 1018 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  K  e.  HL )
2 simp12 1019 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  P  e.  A )
3 simp13 1020 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  T  e.  A )
4 hllat 33371 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  K  e.  Lat )
6 simp21 1021 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  U  e.  A )
7 simp22 1022 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  V  e.  A )
8 eqid 2454 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
9 4at.j . . . . . 6  |-  .\/  =  ( join `  K )
10 4at.a . . . . . 6  |-  A  =  ( Atoms `  K )
118, 9, 10hlatjcl 33374 . . . . 5  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  e.  ( Base `  K ) )
121, 6, 7, 11syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( U  .\/  V )  e.  (
Base `  K )
)
13 simp23 1023 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  W  e.  A )
148, 10atbase 33297 . . . . 5  |-  ( W  e.  A  ->  W  e.  ( Base `  K
) )
1513, 14syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  W  e.  ( Base `  K )
)
168, 9latjcl 15344 . . . 4  |-  ( ( K  e.  Lat  /\  ( U  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( U  .\/  V )  .\/  W )  e.  ( Base `  K ) )
175, 12, 15, 16syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( ( U  .\/  V )  .\/  W )  e.  ( Base `  K ) )
18 simp3 990 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )
19 4at.l . . . 4  |-  .<_  =  ( le `  K )
208, 19, 9, 10hlexchb2 33392 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  T  e.  A  /\  ( ( U  .\/  V )  .\/  W )  e.  ( Base `  K
) )  /\  -.  P  .<_  ( ( U 
.\/  V )  .\/  W ) )  ->  ( P  .<_  ( T  .\/  ( ( U  .\/  V )  .\/  W ) )  <->  ( P  .\/  ( ( U  .\/  V )  .\/  W ) )  =  ( T 
.\/  ( ( U 
.\/  V )  .\/  W ) ) ) )
211, 2, 3, 17, 18, 20syl131anc 1232 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( P  .<_  ( T  .\/  (
( U  .\/  V
)  .\/  W )
)  <->  ( P  .\/  ( ( U  .\/  V )  .\/  W ) )  =  ( T 
.\/  ( ( U 
.\/  V )  .\/  W ) ) ) )
2219, 9, 104atlem4a 33606 . . . 4  |-  ( ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  /\  ( V  e.  A  /\  W  e.  A
) )  ->  (
( T  .\/  U
)  .\/  ( V  .\/  W ) )  =  ( T  .\/  (
( U  .\/  V
)  .\/  W )
) )
231, 3, 6, 7, 13, 22syl32anc 1227 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( ( T  .\/  U )  .\/  ( V  .\/  W ) )  =  ( T 
.\/  ( ( U 
.\/  V )  .\/  W ) ) )
2423breq2d 4415 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( P  .<_  ( ( T  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
P  .<_  ( T  .\/  ( ( U  .\/  V )  .\/  W ) ) ) )
2519, 9, 104atlem4a 33606 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  /\  ( V  e.  A  /\  W  e.  A
) )  ->  (
( P  .\/  U
)  .\/  ( V  .\/  W ) )  =  ( P  .\/  (
( U  .\/  V
)  .\/  W )
) )
261, 2, 6, 7, 13, 25syl32anc 1227 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( ( P  .\/  U )  .\/  ( V  .\/  W ) )  =  ( P 
.\/  ( ( U 
.\/  V )  .\/  W ) ) )
2726, 23eqeq12d 2476 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( (
( P  .\/  U
)  .\/  ( V  .\/  W ) )  =  ( ( T  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
( P  .\/  (
( U  .\/  V
)  .\/  W )
)  =  ( T 
.\/  ( ( U 
.\/  V )  .\/  W ) ) ) )
2821, 24, 273bitr4d 285 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  P  .<_  ( ( U  .\/  V )  .\/  W ) )  ->  ( P  .<_  ( ( T  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  =  ( ( T 
.\/  U )  .\/  ( V  .\/  W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14296   lecple 14368   joincjn 15237   Latclat 15338   Atomscatm 33271   HLchlt 33358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-poset 15239  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-lat 15339  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359
This theorem is referenced by:  4atlem12b  33618
  Copyright terms: Public domain W3C validator