Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem11 Structured version   Unicode version

Theorem 4atlem11 32882
Description: Lemma for 4at 32886. Combine all three possible cases. (Contributed by NM, 10-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4atlem11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( Q  .\/  ( R  .\/  S ) ) 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )

Proof of Theorem 4atlem11
StepHypRef Expression
1 3anass 986 . . . 4  |-  ( ( Q  .<_  ( ( P  .\/  U )  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) )  <->  ( Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  ( R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) ) )
2 simpl11 1080 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  K  e.  HL )
3 hllat 32637 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  K  e.  Lat )
5 simpl2l 1058 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  R  e.  A )
6 eqid 2429 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
7 4at.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
86, 7atbase 32563 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
95, 8syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  R  e.  ( Base `  K
) )
10 simpl2r 1059 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  S  e.  A )
116, 7atbase 32563 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1210, 11syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  S  e.  ( Base `  K
) )
13 simpl12 1081 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  P  e.  A )
14 simpl31 1086 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  U  e.  A )
15 4at.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
166, 15, 7hlatjcl 32640 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
172, 13, 14, 16syl3anc 1264 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  .\/  U )  e.  ( Base `  K
) )
18 simpl32 1087 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  V  e.  A )
19 simpl33 1088 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  W  e.  A )
206, 15, 7hlatjcl 32640 . . . . . . . 8  |-  ( ( K  e.  HL  /\  V  e.  A  /\  W  e.  A )  ->  ( V  .\/  W
)  e.  ( Base `  K ) )
212, 18, 19, 20syl3anc 1264 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( V  .\/  W )  e.  ( Base `  K
) )
226, 15latjcl 16248 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( V  .\/  W )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  .\/  ( V  .\/  W ) )  e.  ( Base `  K ) )
234, 17, 21, 22syl3anc 1264 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( P  .\/  U
)  .\/  ( V  .\/  W ) )  e.  ( Base `  K
) )
24 4at.l . . . . . . 7  |-  .<_  =  ( le `  K )
256, 24, 15latjle12 16259 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  (
( P  .\/  U
)  .\/  ( V  .\/  W ) )  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) )  <->  ( R  .\/  S )  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )
264, 9, 12, 23, 25syl13anc 1266 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )  <->  ( R  .\/  S )  .<_  ( ( P  .\/  U )  .\/  ( V  .\/  W ) ) ) )
2726anbi2d 708 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( Q  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  ( R  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) ) ) )  <->  ( Q  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  ( R  .\/  S ) 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) ) )
281, 27syl5bb 260 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( Q  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) )  <->  ( Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  ( R  .\/  S )  .<_  ( ( P  .\/  U )  .\/  ( V  .\/  W ) ) ) ) )
29 simpl13 1082 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  Q  e.  A )
306, 7atbase 32563 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3129, 30syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  Q  e.  ( Base `  K
) )
326, 15, 7hlatjcl 32640 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
332, 5, 10, 32syl3anc 1264 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( R  .\/  S )  e.  ( Base `  K
) )
346, 24, 15latjle12 16259 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  ( ( P  .\/  U )  .\/  ( V  .\/  W ) )  e.  ( Base `  K ) ) )  ->  ( ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  ( R  .\/  S )  .<_  ( ( P  .\/  U )  .\/  ( V  .\/  W ) ) )  <->  ( Q  .\/  ( R  .\/  S
) )  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )
354, 31, 33, 23, 34syl13anc 1266 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( Q  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  ( R  .\/  S )  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )  <->  ( Q  .\/  ( R  .\/  S ) )  .<_  ( ( P  .\/  U )  .\/  ( V  .\/  W ) ) ) )
3628, 35bitrd 256 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( Q  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) )  <->  ( Q  .\/  ( R  .\/  S
) )  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )
37 simpl1 1008 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
38 simpl2 1009 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( R  e.  A  /\  S  e.  A )
)
3918, 19jca 534 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( V  e.  A  /\  W  e.  A )
)
40 simpr 462 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
4124, 15, 74atlem3a 32870 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  Q  .<_  ( ( P  .\/  V ) 
.\/  W )  \/ 
-.  R  .<_  ( ( P  .\/  V ) 
.\/  W )  \/ 
-.  S  .<_  ( ( P  .\/  V ) 
.\/  W ) ) )
4237, 38, 39, 40, 41syl31anc 1267 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  Q  .<_  ( ( P  .\/  V ) 
.\/  W )  \/ 
-.  R  .<_  ( ( P  .\/  V ) 
.\/  W )  \/ 
-.  S  .<_  ( ( P  .\/  V ) 
.\/  W ) ) )
43 simp1l 1029 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  Q  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) ) )
44 simp1r 1030 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  Q  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
45 simp2 1006 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  Q  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  -.  Q  .<_  ( ( P 
.\/  V )  .\/  W ) )
46 simp3 1007 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  Q  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( Q  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )
4724, 15, 74atlem11b 32881 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) )  /\  -.  Q  .<_  ( ( P  .\/  V
)  .\/  W )
)  /\  ( Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
4843, 44, 45, 46, 47syl121anc 1269 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  Q  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
49483exp 1204 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  Q  .<_  ( ( P  .\/  V ) 
.\/  W )  -> 
( ( Q  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) ) )
5023ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  K  e.  HL )
51133ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  P  e.  A )
52293ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  Q  e.  A )
5353ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  R  e.  A )
54103ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  S  e.  A )
5515, 7hlatj4 32647 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) )  =  ( ( P 
.\/  R )  .\/  ( Q  .\/  S ) ) )
5650, 51, 52, 53, 54, 55syl122anc 1273 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  R )  .\/  ( Q 
.\/  S ) ) )
5750, 51, 533jca 1185 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  R  e.  A ) )
5852, 54jca 534 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( Q  e.  A  /\  S  e.  A )
)
59 simp1l3 1100 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( U  e.  A  /\  V  e.  A  /\  W  e.  A )
)
60 simp1r2 1102 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  -.  R  .<_  ( P  .\/  Q ) )
6124, 15, 74atlem0be 32868 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  P  =/=  R )
6250, 51, 52, 53, 60, 61syl131anc 1277 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  P  =/=  R )
63 simp1r1 1101 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  P  =/=  Q )
6424, 15, 74atlem0ae 32867 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  -.  Q  .<_  ( P 
.\/  R ) )
6550, 51, 52, 53, 63, 60, 64syl132anc 1282 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  -.  Q  .<_  ( P  .\/  R ) )
66 simp1r3 1103 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) )
6715, 7hlatj32 32645 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( P 
.\/  R )  .\/  Q ) )
6850, 51, 52, 53, 67syl13anc 1266 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( P 
.\/  R )  .\/  Q ) )
6968breq2d 4438 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( S  .<_  ( ( P 
.\/  Q )  .\/  R )  <->  S  .<_  ( ( P  .\/  R ) 
.\/  Q ) ) )
7066, 69mtbid 301 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  -.  S  .<_  ( ( P 
.\/  R )  .\/  Q ) )
7162, 65, 703jca 1185 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( P  =/=  R  /\  -.  Q  .<_  ( P  .\/  R )  /\  -.  S  .<_  ( ( P  .\/  R )  .\/  Q ) ) )
72 simp2 1006 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  -.  R  .<_  ( ( P 
.\/  V )  .\/  W ) )
73 simp32 1042 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  R  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
74 simp31 1041 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
75 simp33 1043 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
7624, 15, 74atlem11b 32881 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  /\  ( Q  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  (
( P  =/=  R  /\  -.  Q  .<_  ( P 
.\/  R )  /\  -.  S  .<_  ( ( P  .\/  R ) 
.\/  Q ) )  /\  -.  R  .<_  ( ( P  .\/  V
)  .\/  W )
)  /\  ( R  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  Q  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  R
)  .\/  ( Q  .\/  S ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
7757, 58, 59, 71, 72, 73, 74, 75, 76syl323anc 1294 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  R
)  .\/  ( Q  .\/  S ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
7856, 77eqtrd 2470 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
79783exp 1204 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  R  .<_  ( ( P  .\/  V ) 
.\/  W )  -> 
( ( Q  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) ) )
806, 7atbase 32563 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
8113, 80syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  P  e.  ( Base `  K
) )
826, 15latj4rot 16299 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( S  .\/  P ) 
.\/  ( Q  .\/  R ) ) )
834, 81, 31, 9, 12, 82syl122anc 1273 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( S  .\/  P )  .\/  ( Q 
.\/  R ) ) )
8415, 7hlatjcom 32641 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  e.  A  /\  P  e.  A )  ->  ( S  .\/  P
)  =  ( P 
.\/  S ) )
852, 10, 13, 84syl3anc 1264 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( S  .\/  P )  =  ( P  .\/  S
) )
8685oveq1d 6320 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( S  .\/  P
)  .\/  ( Q  .\/  R ) )  =  ( ( P  .\/  S )  .\/  ( Q 
.\/  R ) ) )
8783, 86eqtrd 2470 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  S )  .\/  ( Q 
.\/  R ) ) )
88873ad2ant1 1026 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  S )  .\/  ( Q 
.\/  R ) ) )
892, 13, 103jca 1185 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  S  e.  A ) )
9029, 5jca 534 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( Q  e.  A  /\  R  e.  A )
)
91 simpl3 1010 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( U  e.  A  /\  V  e.  A  /\  W  e.  A )
)
9289, 90, 913jca 1185 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  /\  ( Q  e.  A  /\  R  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) ) )
93923ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  /\  ( Q  e.  A  /\  R  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) ) )
9424, 15, 74noncolr1 32728 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( S  =/=  P  /\  -.  Q  .<_  ( S  .\/  P )  /\  -.  R  .<_  ( ( S  .\/  P )  .\/  Q ) ) )
9537, 38, 40, 94syl3anc 1264 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( S  =/=  P  /\  -.  Q  .<_  ( S  .\/  P )  /\  -.  R  .<_  ( ( S  .\/  P )  .\/  Q ) ) )
96 necom 2700 . . . . . . . . . . 11  |-  ( S  =/=  P  <->  P  =/=  S )
9796a1i 11 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( S  =/=  P  <->  P  =/=  S ) )
9885breq2d 4438 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( Q  .<_  ( S  .\/  P )  <->  Q  .<_  ( P 
.\/  S ) ) )
9998notbid 295 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  Q  .<_  ( S 
.\/  P )  <->  -.  Q  .<_  ( P  .\/  S
) ) )
10085oveq1d 6320 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( S  .\/  P
)  .\/  Q )  =  ( ( P 
.\/  S )  .\/  Q ) )
101100breq2d 4438 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( R  .<_  ( ( S 
.\/  P )  .\/  Q )  <->  R  .<_  ( ( P  .\/  S ) 
.\/  Q ) ) )
102101notbid 295 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  R  .<_  ( ( S  .\/  P ) 
.\/  Q )  <->  -.  R  .<_  ( ( P  .\/  S )  .\/  Q ) ) )
10397, 99, 1023anbi123d 1335 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( S  =/=  P  /\  -.  Q  .<_  ( S 
.\/  P )  /\  -.  R  .<_  ( ( S  .\/  P ) 
.\/  Q ) )  <-> 
( P  =/=  S  /\  -.  Q  .<_  ( P 
.\/  S )  /\  -.  R  .<_  ( ( P  .\/  S ) 
.\/  Q ) ) ) )
10495, 103mpbid 213 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  =/=  S  /\  -.  Q  .<_  ( P  .\/  S )  /\  -.  R  .<_  ( ( P  .\/  S )  .\/  Q ) ) )
1051043ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( P  =/=  S  /\  -.  Q  .<_  ( P  .\/  S )  /\  -.  R  .<_  ( ( P  .\/  S )  .\/  Q ) ) )
106 simp2 1006 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  -.  S  .<_  ( ( P 
.\/  V )  .\/  W ) )
107 simpr3 1013 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  ( Q  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )  ->  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) )
108 simpr1 1011 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  ( Q  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )  ->  Q  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) )
109 simpr2 1012 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  ( Q  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )  ->  R  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) )
110107, 108, 1093jca 1185 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  ( Q  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )  -> 
( S  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )
1111103adant2 1024 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  ( S  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  Q  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )
11224, 15, 74atlem11b 32881 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  /\  ( Q  e.  A  /\  R  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  (
( P  =/=  S  /\  -.  Q  .<_  ( P 
.\/  S )  /\  -.  R  .<_  ( ( P  .\/  S ) 
.\/  Q ) )  /\  -.  S  .<_  ( ( P  .\/  V
)  .\/  W )
)  /\  ( S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  Q  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  S
)  .\/  ( Q  .\/  R ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
11393, 105, 106, 111, 112syl121anc 1269 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  S
)  .\/  ( Q  .\/  R ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
11488, 113eqtrd 2470 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  V )  .\/  W )  /\  ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )
1151143exp 1204 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  S  .<_  ( ( P  .\/  V ) 
.\/  W )  -> 
( ( Q  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U
)  .\/  ( V  .\/  W ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) ) )
11649, 79, 1153jaod 1328 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( -.  Q  .<_  ( ( P  .\/  V
)  .\/  W )  \/  -.  R  .<_  ( ( P  .\/  V ) 
.\/  W )  \/ 
-.  S  .<_  ( ( P  .\/  V ) 
.\/  W ) )  ->  ( ( Q 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) ) )  ->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) ) )
11742, 116mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( Q  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) )  -> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) )  =  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )
11836, 117sylbird 238 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( Q  .\/  ( R  .\/  S ) ) 
.<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    \/ w3o 981    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   Basecbs 15084   lecple 15159   joincjn 16140   Latclat 16242   Atomscatm 32537   HLchlt 32624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-lat 16243  df-clat 16305  df-oposet 32450  df-ol 32452  df-oml 32453  df-covers 32540  df-ats 32541  df-atl 32572  df-cvlat 32596  df-hlat 32625  df-llines 32771  df-lplanes 32772  df-lvols 32773
This theorem is referenced by:  4atlem12b  32884
  Copyright terms: Public domain W3C validator