Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem10b Structured version   Visualization version   Unicode version

Theorem 4atlem10b 33215
Description: Lemma for 4at 33223. Substitute  V for  R (cont.). (Contributed by NM, 10-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4atlem10b  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )

Proof of Theorem 4atlem10b
StepHypRef Expression
1 simprr 771 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
2 simprl 769 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  R  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
3 simpl1 1017 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
4 simpl21 1092 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  R  e.  A
)
5 simpl23 1094 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  V  e.  A
)
6 simpl31 1095 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  W  e.  A
)
7 simpl32 1096 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  -.  R  .<_  ( ( P  .\/  Q
)  .\/  W )
)
8 4at.l . . . . . . 7  |-  .<_  =  ( le `  K )
9 4at.j . . . . . . 7  |-  .\/  =  ( join `  K )
10 4at.a . . . . . . 7  |-  A  =  ( Atoms `  K )
118, 9, 104atlem10a 33214 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  R  .<_  ( ( P  .\/  Q )  .\/  W ) )  ->  ( R  .<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  <-> 
( ( P  .\/  Q )  .\/  ( R 
.\/  W ) )  =  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) ) ) )
123, 4, 5, 6, 7, 11syl131anc 1289 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( R  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) )  <->  ( ( P  .\/  Q )  .\/  ( R  .\/  W ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )
132, 12mpbid 215 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  W ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
141, 13breqtrrd 4443 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  S  .<_  ( ( P  .\/  Q ) 
.\/  ( R  .\/  W ) ) )
15 simpl22 1093 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  S  e.  A
)
16 simpl33 1097 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  -.  S  .<_  ( ( P  .\/  Q
)  .\/  R )
)
178, 9, 104atlem9 33213 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  W  e.  A
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) )  ->  ( S  .<_  ( ( P  .\/  Q )  .\/  ( R 
.\/  W ) )  <-> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) )  =  ( ( P 
.\/  Q )  .\/  ( R  .\/  W ) ) ) )
183, 4, 15, 6, 16, 17syl131anc 1289 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( S  .<_  ( ( P  .\/  Q
)  .\/  ( R  .\/  W ) )  <->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( R  .\/  W ) ) ) )
1914, 18mpbid 215 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( R  .\/  W ) ) )
2019, 13eqtrd 2496 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   lecple 15246   joincjn 16238   Atomscatm 32874   HLchlt 32961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-preset 16222  df-poset 16240  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-lat 16341  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962
This theorem is referenced by:  4atlem10  33216
  Copyright terms: Public domain W3C validator