Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem10 Structured version   Unicode version

Theorem 4atlem10 33589
Description: Lemma for 4at 33596. Combine both possible cases. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4atlem10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( R  .\/  S
)  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) )  ->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )

Proof of Theorem 4atlem10
StepHypRef Expression
1 simp11 1018 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  K  e.  HL )
2 hllat 33347 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  K  e.  Lat )
4 simp21l 1105 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  R  e.  A )
5 eqid 2454 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
6 4at.a . . . . 5  |-  A  =  ( Atoms `  K )
75, 6atbase 33273 . . . 4  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
84, 7syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  R  e.  ( Base `  K
) )
9 simp21r 1106 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  S  e.  A )
105, 6atbase 33273 . . . 4  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
119, 10syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  S  e.  ( Base `  K
) )
12 4at.j . . . . . 6  |-  .\/  =  ( join `  K )
135, 12, 6hlatjcl 33350 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
14133ad2ant1 1009 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
15 simp22 1022 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  V  e.  A )
16 simp23 1023 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  W  e.  A )
175, 12, 6hlatjcl 33350 . . . . 5  |-  ( ( K  e.  HL  /\  V  e.  A  /\  W  e.  A )  ->  ( V  .\/  W
)  e.  ( Base `  K ) )
181, 15, 16, 17syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( V  .\/  W )  e.  ( Base `  K
) )
195, 12latjcl 15341 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( V  .\/  W )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  ( V  .\/  W ) )  e.  ( Base `  K ) )
203, 14, 18, 19syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( P  .\/  Q
)  .\/  ( V  .\/  W ) )  e.  ( Base `  K
) )
21 4at.l . . . 4  |-  .<_  =  ( le `  K )
225, 21, 12latjle12 15352 . . 3  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  .\/  ( V  .\/  W ) )  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) ) )  <->  ( R  .\/  S )  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )
233, 8, 11, 20, 22syl13anc 1221 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( R  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) ) )  <->  ( R  .\/  S )  .<_  ( ( P  .\/  Q )  .\/  ( V  .\/  W ) ) ) )
24 simp11 1018 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
254, 9, 153jca 1168 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )
)
26253ad2ant1 1009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( R  e.  A  /\  S  e.  A  /\  V  e.  A ) )
27163ad2ant1 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  W  e.  A
)
28 simp2 989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  -.  R  .<_  ( ( P  .\/  Q
)  .\/  W )
)
29 simp33 1026 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) )
30293ad2ant1 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  -.  S  .<_  ( ( P  .\/  Q
)  .\/  R )
)
3127, 28, 303jca 1168 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q )  .\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q
)  .\/  R )
) )
32 simp3 990 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( R  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) ) ) )
3321, 12, 64atlem10b 33588 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
3424, 26, 31, 32, 33syl31anc 1222 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  R  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
35343exp 1187 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  -> 
( ( R  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) ) ) ) )
3612, 6hlatjcom 33351 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  e.  A  /\  R  e.  A )  ->  ( S  .\/  R
)  =  ( R 
.\/  S ) )
371, 9, 4, 36syl3anc 1219 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( S  .\/  R )  =  ( R  .\/  S
) )
3837oveq2d 6217 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( P  .\/  Q
)  .\/  ( S  .\/  R ) )  =  ( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) )
39383ad2ant1 1009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( S  .\/  R ) )  =  ( ( P  .\/  Q ) 
.\/  ( R  .\/  S ) ) )
40 simp11 1018 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
419, 4, 153jca 1168 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( S  e.  A  /\  R  e.  A  /\  V  e.  A )
)
42413ad2ant1 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( S  e.  A  /\  R  e.  A  /\  V  e.  A ) )
43163ad2ant1 1009 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  W  e.  A
)
44 simp2 989 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  -.  S  .<_  ( ( P  .\/  Q
)  .\/  W )
)
45 simp12 1019 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  P  e.  A )
46 simp13 1020 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  Q  e.  A )
4745, 46jca 532 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  e.  A  /\  Q  e.  A )
)
48 simp21 1021 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( R  e.  A  /\  S  e.  A )
)
49 simp32 1025 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  -.  R  .<_  ( P  .\/  Q ) )
5021, 12, 64atlem0a 33576 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q
)  .\/  R )
) )  ->  -.  R  .<_  ( ( P 
.\/  Q )  .\/  S ) )
511, 47, 48, 49, 29, 50syl32anc 1227 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  -.  R  .<_  ( ( P 
.\/  Q )  .\/  S ) )
52513ad2ant1 1009 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  -.  R  .<_  ( ( P  .\/  Q
)  .\/  S )
)
5343, 44, 523jca 1168 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( W  e.  A  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  W )  /\  -.  R  .<_  ( ( P  .\/  Q
)  .\/  S )
) )
54 simprr 756 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  ( R  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) ) ) )  ->  S  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) ) )
55 simprl 755 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  ( R  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) ) ) )  ->  R  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) ) )
5654, 55jca 532 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  ( R  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) ) ) )  ->  ( S  .<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )
57563adant2 1007 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( S  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) )  /\  R  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) ) ) )
5821, 12, 64atlem10b 33588 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  R  e.  A  /\  V  e.  A )  /\  ( W  e.  A  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  W )  /\  -.  R  .<_  ( ( P  .\/  Q ) 
.\/  S ) ) )  /\  ( S 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  R  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( S  .\/  R ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
5940, 42, 53, 57, 58syl31anc 1222 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( S  .\/  R ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
6039, 59eqtr3d 2497 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
( R  e.  A  /\  S  e.  A
)  /\  V  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  /\  -.  S  .<_  ( ( P 
.\/  Q )  .\/  W )  /\  ( R 
.<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  /\  S  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) )
61603exp 1187 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  S  .<_  ( ( P  .\/  Q ) 
.\/  W )  -> 
( ( R  .<_  ( ( P  .\/  Q
)  .\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) ) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) ) ) ) )
62 simp1 988 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
63 simp3 990 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
6421, 12, 64atlem3b 33581 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  W  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  \/ 
-.  S  .<_  ( ( P  .\/  Q ) 
.\/  W ) ) )
6562, 4, 9, 16, 63, 64syl131anc 1232 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( -.  R  .<_  ( ( P  .\/  Q ) 
.\/  W )  \/ 
-.  S  .<_  ( ( P  .\/  Q ) 
.\/  W ) ) )
6635, 61, 65mpjaod 381 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( R  .<_  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) )  /\  S  .<_  ( ( P  .\/  Q )  .\/  ( V 
.\/  W ) ) )  ->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )
6723, 66sylbird 235 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  S  e.  A )  /\  V  e.  A  /\  W  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( R  .\/  S
)  .<_  ( ( P 
.\/  Q )  .\/  ( V  .\/  W ) )  ->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( P  .\/  Q ) 
.\/  ( V  .\/  W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   Basecbs 14293   lecple 14365   joincjn 15234   Latclat 15335   Atomscatm 33247   HLchlt 33334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-llines 33481  df-lplanes 33482  df-lvols 33483
This theorem is referenced by:  4atlem11b  33591
  Copyright terms: Public domain W3C validator