Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemc Structured version   Unicode version

Theorem 4atexlemc 33086
Description: Lemma for 4atexlem7 33092. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
4thatlem0.l  |-  .<_  =  ( le `  K )
4thatlem0.j  |-  .\/  =  ( join `  K )
4thatlem0.m  |-  ./\  =  ( meet `  K )
4thatlem0.a  |-  A  =  ( Atoms `  K )
4thatlem0.h  |-  H  =  ( LHyp `  K
)
4thatlem0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
4thatlem0.v  |-  V  =  ( ( P  .\/  S )  ./\  W )
4thatlem0.c  |-  C  =  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )
Assertion
Ref Expression
4atexlemc  |-  ( ph  ->  C  e.  A )

Proof of Theorem 4atexlemc
StepHypRef Expression
1 4thatlem0.c . . 3  |-  C  =  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )
2 4thatlem.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
324atexlemkl 33074 . . . 4  |-  ( ph  ->  K  e.  Lat )
4 4thatlem0.j . . . . 5  |-  .\/  =  ( join `  K )
5 4thatlem0.a . . . . 5  |-  A  =  ( Atoms `  K )
62, 4, 54atexlemqtb 33078 . . . 4  |-  ( ph  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
72, 4, 54atexlempsb 33077 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
8 eqid 2402 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
9 4thatlem0.m . . . . 5  |-  ./\  =  ( meet `  K )
108, 9latmcom 16029 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  .\/  T )  e.  ( Base `  K
)  /\  ( P  .\/  S )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  =  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) ) )
113, 6, 7, 10syl3anc 1230 . . 3  |-  ( ph  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) ) )
121, 11syl5eq 2455 . 2  |-  ( ph  ->  C  =  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) ) )
1324atexlemk 33064 . . 3  |-  ( ph  ->  K  e.  HL )
1424atexlemp 33067 . . 3  |-  ( ph  ->  P  e.  A )
1524atexlems 33069 . . 3  |-  ( ph  ->  S  e.  A )
1624atexlemq 33068 . . 3  |-  ( ph  ->  Q  e.  A )
1724atexlemt 33070 . . 3  |-  ( ph  ->  T  e.  A )
18 4thatlem0.l . . . 4  |-  .<_  =  ( le `  K )
192, 18, 4, 54atexlempns 33079 . . 3  |-  ( ph  ->  P  =/=  S )
20 4thatlem0.h . . . . 5  |-  H  =  ( LHyp `  K
)
21 4thatlem0.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
22 4thatlem0.v . . . . 5  |-  V  =  ( ( P  .\/  S )  ./\  W )
232, 18, 4, 9, 5, 20, 21, 224atexlemntlpq 33085 . . . 4  |-  ( ph  ->  -.  T  .<_  ( P 
.\/  Q ) )
2418, 4, 5atnlej2 32397 . . . . 5  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  T  .<_  ( P  .\/  Q
) )  ->  T  =/=  Q )
2524necomd 2674 . . . 4  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  T  .<_  ( P  .\/  Q
) )  ->  Q  =/=  T )
2613, 17, 14, 16, 23, 25syl131anc 1243 . . 3  |-  ( ph  ->  Q  =/=  T )
2724atexlempnq 33072 . . . 4  |-  ( ph  ->  P  =/=  Q )
2824atexlemnslpq 33073 . . . 4  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  Q ) )
2918, 4, 54atlem0ae 32611 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  Q  .<_  ( P 
.\/  S ) )
3013, 14, 16, 15, 27, 28, 29syl132anc 1248 . . 3  |-  ( ph  ->  -.  Q  .<_  ( P 
.\/  S ) )
318, 5atbase 32307 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
3217, 31syl 17 . . . 4  |-  ( ph  ->  T  e.  ( Base `  K ) )
332, 18, 4, 9, 5, 20, 214atexlemu 33081 . . . . 5  |-  ( ph  ->  U  e.  A )
342, 18, 4, 9, 5, 20, 21, 224atexlemv 33082 . . . . 5  |-  ( ph  ->  V  e.  A )
358, 4, 5hlatjcl 32384 . . . . 5  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  e.  ( Base `  K ) )
3613, 33, 34, 35syl3anc 1230 . . . 4  |-  ( ph  ->  ( U  .\/  V
)  e.  ( Base `  K ) )
378, 5atbase 32307 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3816, 37syl 17 . . . . 5  |-  ( ph  ->  Q  e.  ( Base `  K ) )
398, 4latjcl 16005 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  .\/  Q )  e.  ( Base `  K ) )
403, 7, 38, 39syl3anc 1230 . . . 4  |-  ( ph  ->  ( ( P  .\/  S )  .\/  Q )  e.  ( Base `  K
) )
4124atexlemkc 33075 . . . . 5  |-  ( ph  ->  K  e.  CvLat )
422, 18, 4, 9, 5, 20, 21, 224atexlemunv 33083 . . . . 5  |-  ( ph  ->  U  =/=  V )
4324atexlemutvt 33071 . . . . 5  |-  ( ph  ->  ( U  .\/  T
)  =  ( V 
.\/  T ) )
445, 18, 4cvlsupr4 32363 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( U  e.  A  /\  V  e.  A  /\  T  e.  A )  /\  ( U  =/=  V  /\  ( U  .\/  T
)  =  ( V 
.\/  T ) ) )  ->  T  .<_  ( U  .\/  V ) )
4541, 33, 34, 17, 42, 43, 44syl132anc 1248 . . . 4  |-  ( ph  ->  T  .<_  ( U  .\/  V ) )
468, 4, 5hlatjcl 32384 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
4713, 14, 16, 46syl3anc 1230 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
482, 204atexlemwb 33076 . . . . . . . 8  |-  ( ph  ->  W  e.  ( Base `  K ) )
498, 18, 9latmle1 16030 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q ) )
503, 47, 48, 49syl3anc 1230 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q
) )
5121, 50syl5eqbr 4428 . . . . . 6  |-  ( ph  ->  U  .<_  ( P  .\/  Q ) )
528, 18, 9latmle1 16030 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
533, 7, 48, 52syl3anc 1230 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S
) )
5422, 53syl5eqbr 4428 . . . . . 6  |-  ( ph  ->  V  .<_  ( P  .\/  S ) )
558, 5atbase 32307 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
5633, 55syl 17 . . . . . . 7  |-  ( ph  ->  U  e.  ( Base `  K ) )
578, 5atbase 32307 . . . . . . . 8  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
5834, 57syl 17 . . . . . . 7  |-  ( ph  ->  V  e.  ( Base `  K ) )
598, 18, 4latjlej12 16021 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  /\  ( V  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( U  .<_  ( P  .\/  Q )  /\  V  .<_  ( P 
.\/  S ) )  ->  ( U  .\/  V )  .<_  ( ( P  .\/  Q )  .\/  ( P  .\/  S ) ) ) )
603, 56, 47, 58, 7, 59syl122anc 1239 . . . . . 6  |-  ( ph  ->  ( ( U  .<_  ( P  .\/  Q )  /\  V  .<_  ( P 
.\/  S ) )  ->  ( U  .\/  V )  .<_  ( ( P  .\/  Q )  .\/  ( P  .\/  S ) ) ) )
6151, 54, 60mp2and 677 . . . . 5  |-  ( ph  ->  ( U  .\/  V
)  .<_  ( ( P 
.\/  Q )  .\/  ( P  .\/  S ) ) )
624, 5hlatjass 32387 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  S )  =  ( P  .\/  ( Q  .\/  S ) ) )
6313, 14, 16, 15, 62syl13anc 1232 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  S )  =  ( P  .\/  ( Q  .\/  S ) ) )
648, 5atbase 32307 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
6514, 64syl 17 . . . . . . 7  |-  ( ph  ->  P  e.  ( Base `  K ) )
668, 5atbase 32307 . . . . . . . 8  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
6715, 66syl 17 . . . . . . 7  |-  ( ph  ->  S  e.  ( Base `  K ) )
688, 4latj32 16051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  Q )  .\/  S )  =  ( ( P 
.\/  S )  .\/  Q ) )
693, 65, 38, 67, 68syl13anc 1232 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  S )  =  ( ( P 
.\/  S )  .\/  Q ) )
708, 4latjjdi 16057 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( P  .\/  ( Q  .\/  S ) )  =  ( ( P 
.\/  Q )  .\/  ( P  .\/  S ) ) )
713, 65, 38, 67, 70syl13anc 1232 . . . . . 6  |-  ( ph  ->  ( P  .\/  ( Q  .\/  S ) )  =  ( ( P 
.\/  Q )  .\/  ( P  .\/  S ) ) )
7263, 69, 713eqtr3rd 2452 . . . . 5  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  ( P 
.\/  S ) )  =  ( ( P 
.\/  S )  .\/  Q ) )
7361, 72breqtrd 4419 . . . 4  |-  ( ph  ->  ( U  .\/  V
)  .<_  ( ( P 
.\/  S )  .\/  Q ) )
748, 18, 3, 32, 36, 40, 45, 73lattrd 16012 . . 3  |-  ( ph  ->  T  .<_  ( ( P  .\/  S )  .\/  Q ) )
7518, 4, 9, 52atmat 32578 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  /\  ( Q  e.  A  /\  T  e.  A  /\  P  =/=  S
)  /\  ( Q  =/=  T  /\  -.  Q  .<_  ( P  .\/  S
)  /\  T  .<_  ( ( P  .\/  S
)  .\/  Q )
) )  ->  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  e.  A )
7613, 14, 15, 16, 17, 19, 26, 30, 74, 75syl333anc 1262 . 2  |-  ( ph  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  e.  A )
7712, 76eqeltrd 2490 1  |-  ( ph  ->  C  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   meetcmee 15898   Latclat 15999   Atomscatm 32281   CvLatclc 32283   HLchlt 32368   LHypclh 33001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-lplanes 32516  df-lhyp 33005
This theorem is referenced by:  4atexlemnclw  33087  4atexlemex2  33088  4atexlemcnd  33089
  Copyright terms: Public domain W3C validator