Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0aOLDN Structured version   Unicode version

Theorem 4atex2-0aOLDN 36199
Description: Same as 4atex2 36198 except that  S is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atex2-0aOLDN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z    T, r, z
Allowed substitution hint:    H( z)

Proof of Theorem 4atex2-0aOLDN
StepHypRef Expression
1 simp32l 1119 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  T  e.  A
)
2 simp32r 1120 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  T  .<_  W )
3 simp1l 1018 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
4 hlol 35483 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
53, 4syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  OL )
6 eqid 2454 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 4that.a . . . . . 6  |-  A  =  ( Atoms `  K )
86, 7atbase 35411 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
91, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  T  e.  (
Base `  K )
)
10 4that.j . . . . 5  |-  .\/  =  ( join `  K )
11 eqid 2454 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
126, 10, 11olj02 35348 . . . 4  |-  ( ( K  e.  OL  /\  T  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  T
)  =  T )
135, 9, 12syl2anc 659 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( 0.
`  K )  .\/  T )  =  T )
14 simp23 1029 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  S  =  ( 0. `  K ) )
1514oveq1d 6285 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  .\/  T )  =  ( ( 0. `  K ) 
.\/  T ) )
1610, 7hlatjidm 35490 . . . 4  |-  ( ( K  e.  HL  /\  T  e.  A )  ->  ( T  .\/  T
)  =  T )
173, 1, 16syl2anc 659 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( T  .\/  T )  =  T )
1813, 15, 173eqtr4d 2505 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  .\/  T )  =  ( T 
.\/  T ) )
19 breq1 4442 . . . . 5  |-  ( z  =  T  ->  (
z  .<_  W  <->  T  .<_  W ) )
2019notbid 292 . . . 4  |-  ( z  =  T  ->  ( -.  z  .<_  W  <->  -.  T  .<_  W ) )
21 oveq2 6278 . . . . 5  |-  ( z  =  T  ->  ( S  .\/  z )  =  ( S  .\/  T
) )
22 oveq2 6278 . . . . 5  |-  ( z  =  T  ->  ( T  .\/  z )  =  ( T  .\/  T
) )
2321, 22eqeq12d 2476 . . . 4  |-  ( z  =  T  ->  (
( S  .\/  z
)  =  ( T 
.\/  z )  <->  ( S  .\/  T )  =  ( T  .\/  T ) ) )
2420, 23anbi12d 708 . . 3  |-  ( z  =  T  ->  (
( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) )  <->  ( -.  T  .<_  W  /\  ( S 
.\/  T )  =  ( T  .\/  T
) ) ) )
2524rspcev 3207 . 2  |-  ( ( T  e.  A  /\  ( -.  T  .<_  W  /\  ( S  .\/  T )  =  ( T 
.\/  T ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
261, 2, 18, 25syl12anc 1224 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   E.wrex 2805   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   Basecbs 14716   lecple 14791   joincjn 15772   0.cp0 15866   OLcol 35296   Atomscatm 35385   HLchlt 35472   LHypclh 36105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-preset 15756  df-poset 15774  df-lub 15803  df-glb 15804  df-join 15805  df-meet 15806  df-p0 15868  df-lat 15875  df-oposet 35298  df-ol 35300  df-oml 35301  df-ats 35389  df-atl 35420  df-cvlat 35444  df-hlat 35473
This theorem is referenced by:  4atex2-0bOLDN  36200
  Copyright terms: Public domain W3C validator