Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0aOLDN Structured version   Unicode version

Theorem 4atex2-0aOLDN 34041
Description: Same as 4atex2 34040 except that  S is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atex2-0aOLDN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z    T, r, z
Allowed substitution hint:    H( z)

Proof of Theorem 4atex2-0aOLDN
StepHypRef Expression
1 simp32l 1113 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  T  e.  A
)
2 simp32r 1114 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  T  .<_  W )
3 simp1l 1012 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
4 hlol 33325 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
53, 4syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  OL )
6 eqid 2452 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 4that.a . . . . . 6  |-  A  =  ( Atoms `  K )
86, 7atbase 33253 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
91, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  T  e.  (
Base `  K )
)
10 4that.j . . . . 5  |-  .\/  =  ( join `  K )
11 eqid 2452 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
126, 10, 11olj02 33190 . . . 4  |-  ( ( K  e.  OL  /\  T  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  T
)  =  T )
135, 9, 12syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( 0.
`  K )  .\/  T )  =  T )
14 simp23 1023 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  S  =  ( 0. `  K ) )
1514oveq1d 6210 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  .\/  T )  =  ( ( 0. `  K ) 
.\/  T ) )
1610, 7hlatjidm 33332 . . . 4  |-  ( ( K  e.  HL  /\  T  e.  A )  ->  ( T  .\/  T
)  =  T )
173, 1, 16syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( T  .\/  T )  =  T )
1813, 15, 173eqtr4d 2503 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  .\/  T )  =  ( T 
.\/  T ) )
19 breq1 4398 . . . . 5  |-  ( z  =  T  ->  (
z  .<_  W  <->  T  .<_  W ) )
2019notbid 294 . . . 4  |-  ( z  =  T  ->  ( -.  z  .<_  W  <->  -.  T  .<_  W ) )
21 oveq2 6203 . . . . 5  |-  ( z  =  T  ->  ( S  .\/  z )  =  ( S  .\/  T
) )
22 oveq2 6203 . . . . 5  |-  ( z  =  T  ->  ( T  .\/  z )  =  ( T  .\/  T
) )
2321, 22eqeq12d 2474 . . . 4  |-  ( z  =  T  ->  (
( S  .\/  z
)  =  ( T 
.\/  z )  <->  ( S  .\/  T )  =  ( T  .\/  T ) ) )
2420, 23anbi12d 710 . . 3  |-  ( z  =  T  ->  (
( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) )  <->  ( -.  T  .<_  W  /\  ( S 
.\/  T )  =  ( T  .\/  T
) ) ) )
2524rspcev 3173 . 2  |-  ( ( T  e.  A  /\  ( -.  T  .<_  W  /\  ( S  .\/  T )  =  ( T 
.\/  T ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
261, 2, 18, 25syl12anc 1217 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   E.wrex 2797   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   Basecbs 14287   lecple 14359   joincjn 15228   0.cp0 15321   OLcol 33138   Atomscatm 33227   HLchlt 33314   LHypclh 33947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-poset 15230  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-lat 15330  df-oposet 33140  df-ol 33142  df-oml 33143  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315
This theorem is referenced by:  4atex2-0bOLDN  34042
  Copyright terms: Public domain W3C validator