Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex Structured version   Unicode version

Theorem 4atex 33073
Description: Whenever there are at least 4 atoms under  P  .\/  Q (specifically,  P,  Q,  r, and  ( P  .\/  Q
)  ./\  W), there are also at least 4 atoms under  P  .\/  S. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p  \/ q/0 and hence p  \/ s/0 contains at least four atoms..." Note that by cvlsupr2 32341, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). (Contributed by NM, 27-May-2013.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atex  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z
Allowed substitution hint:    H( z)

Proof of Theorem 4atex
StepHypRef Expression
1 simp21l 1114 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
21ad2antrr 724 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  P  e.  A )
3 simp21r 1115 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  P  .<_  W )
43ad2antrr 724 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  -.  P  .<_  W )
5 oveq1 6284 . . . . . 6  |-  ( P  =  S  ->  ( P  .\/  P )  =  ( S  .\/  P
) )
65eqcoms 2414 . . . . 5  |-  ( S  =  P  ->  ( P  .\/  P )  =  ( S  .\/  P
) )
76adantl 464 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  ( P  .\/  P )  =  ( S  .\/  P
) )
8 breq1 4397 . . . . . . 7  |-  ( z  =  P  ->  (
z  .<_  W  <->  P  .<_  W ) )
98notbid 292 . . . . . 6  |-  ( z  =  P  ->  ( -.  z  .<_  W  <->  -.  P  .<_  W ) )
10 oveq2 6285 . . . . . . 7  |-  ( z  =  P  ->  ( P  .\/  z )  =  ( P  .\/  P
) )
11 oveq2 6285 . . . . . . 7  |-  ( z  =  P  ->  ( S  .\/  z )  =  ( S  .\/  P
) )
1210, 11eqeq12d 2424 . . . . . 6  |-  ( z  =  P  ->  (
( P  .\/  z
)  =  ( S 
.\/  z )  <->  ( P  .\/  P )  =  ( S  .\/  P ) ) )
139, 12anbi12d 709 . . . . 5  |-  ( z  =  P  ->  (
( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  ( -.  P  .<_  W  /\  ( P 
.\/  P )  =  ( S  .\/  P
) ) ) )
1413rspcev 3159 . . . 4  |-  ( ( P  e.  A  /\  ( -.  P  .<_  W  /\  ( P  .\/  P )  =  ( S 
.\/  P ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
152, 4, 7, 14syl12anc 1228 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
16 simpl3r 1053 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
1716ad2antrr 724 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =  Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
18 oveq1 6284 . . . . . . . . . 10  |-  ( S  =  Q  ->  ( S  .\/  z )  =  ( Q  .\/  z
) )
1918eqeq2d 2416 . . . . . . . . 9  |-  ( S  =  Q  ->  (
( P  .\/  z
)  =  ( S 
.\/  z )  <->  ( P  .\/  z )  =  ( Q  .\/  z ) ) )
2019anbi2d 702 . . . . . . . 8  |-  ( S  =  Q  ->  (
( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( Q  .\/  z
) ) ) )
2120rexbidv 2917 . . . . . . 7  |-  ( S  =  Q  ->  ( E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( Q  .\/  z ) ) ) )
22 breq1 4397 . . . . . . . . . 10  |-  ( r  =  z  ->  (
r  .<_  W  <->  z  .<_  W ) )
2322notbid 292 . . . . . . . . 9  |-  ( r  =  z  ->  ( -.  r  .<_  W  <->  -.  z  .<_  W ) )
24 oveq2 6285 . . . . . . . . . 10  |-  ( r  =  z  ->  ( P  .\/  r )  =  ( P  .\/  z
) )
25 oveq2 6285 . . . . . . . . . 10  |-  ( r  =  z  ->  ( Q  .\/  r )  =  ( Q  .\/  z
) )
2624, 25eqeq12d 2424 . . . . . . . . 9  |-  ( r  =  z  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  z )  =  ( Q  .\/  z ) ) )
2723, 26anbi12d 709 . . . . . . . 8  |-  ( r  =  z  ->  (
( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( Q  .\/  z
) ) ) )
2827cbvrexv 3034 . . . . . . 7  |-  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( Q  .\/  z
) ) )
2921, 28syl6rbbr 264 . . . . . 6  |-  ( S  =  Q  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )
3029adantl 464 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =  Q )  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )
3117, 30mpbid 210 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =  Q )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
32 simp22l 1116 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
3332ad3antrrr 728 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  e.  A )
34 simp22r 1117 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  Q  .<_  W )
3534ad3antrrr 728 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  -.  Q  .<_  W )
36 simp3l 1025 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
3736necomd 2674 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  =/=  P
)
3837ad3antrrr 728 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  =/=  P )
39 simpr 459 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  =/=  Q )
4039necomd 2674 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  =/=  S )
41 simpllr 761 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  .<_  ( P  .\/  Q ) )
42 simp1l 1021 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
43 hlcvl 32357 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  CvLat )
4442, 43syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  CvLat )
4544ad3antrrr 728 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  K  e.  CvLat
)
46 simp23 1032 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  S  e.  A
)
4746ad3antrrr 728 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  e.  A )
481ad3antrrr 728 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  P  e.  A )
49 simplr 754 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  =/=  P )
50 4that.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
51 4that.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
52 4that.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
5350, 51, 52cvlatexch1 32334 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( S  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  S  =/=  P
)  ->  ( S  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  S ) ) )
5445, 47, 33, 48, 49, 53syl131anc 1243 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  ( S  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  S ) ) )
5541, 54mpd 15 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  .<_  ( P  .\/  S ) )
5649necomd 2674 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  P  =/=  S )
5752, 50, 51cvlsupr2 32341 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  S  e.  A  /\  Q  e.  A )  /\  P  =/=  S
)  ->  ( ( P  .\/  Q )  =  ( S  .\/  Q
)  <->  ( Q  =/= 
P  /\  Q  =/=  S  /\  Q  .<_  ( P 
.\/  S ) ) ) )
5845, 48, 47, 33, 56, 57syl131anc 1243 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  ( ( P  .\/  Q )  =  ( S  .\/  Q
)  <->  ( Q  =/= 
P  /\  Q  =/=  S  /\  Q  .<_  ( P 
.\/  S ) ) ) )
5938, 40, 55, 58mpbir3and 1180 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  ( P  .\/  Q )  =  ( S  .\/  Q ) )
60 breq1 4397 . . . . . . . 8  |-  ( z  =  Q  ->  (
z  .<_  W  <->  Q  .<_  W ) )
6160notbid 292 . . . . . . 7  |-  ( z  =  Q  ->  ( -.  z  .<_  W  <->  -.  Q  .<_  W ) )
62 oveq2 6285 . . . . . . . 8  |-  ( z  =  Q  ->  ( P  .\/  z )  =  ( P  .\/  Q
) )
63 oveq2 6285 . . . . . . . 8  |-  ( z  =  Q  ->  ( S  .\/  z )  =  ( S  .\/  Q
) )
6462, 63eqeq12d 2424 . . . . . . 7  |-  ( z  =  Q  ->  (
( P  .\/  z
)  =  ( S 
.\/  z )  <->  ( P  .\/  Q )  =  ( S  .\/  Q ) ) )
6561, 64anbi12d 709 . . . . . 6  |-  ( z  =  Q  ->  (
( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  ( -.  Q  .<_  W  /\  ( P 
.\/  Q )  =  ( S  .\/  Q
) ) ) )
6665rspcev 3159 . . . . 5  |-  ( ( Q  e.  A  /\  ( -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( S 
.\/  Q ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
6733, 35, 59, 66syl12anc 1228 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
6831, 67pm2.61dane 2721 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =/= 
P )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
6915, 68pm2.61dane 2721 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
70 simpl1 1000 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
71 simpl2 1001 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )
72 simpl3l 1052 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  Q )
73 simpr 459 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  ( P  .\/  Q ) )
74 simpl3r 1053 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
75 4that.h . . . 4  |-  H  =  ( LHyp `  K
)
7650, 51, 52, 754atexlem7 33072 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
7770, 71, 72, 73, 74, 76syl113anc 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
7869, 77pm2.61dan 792 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2754   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   lecple 14914   joincjn 15895   Atomscatm 32261   CvLatclc 32263   HLchlt 32348   LHypclh 32981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-preset 15879  df-poset 15897  df-plt 15910  df-lub 15926  df-glb 15927  df-join 15928  df-meet 15929  df-p0 15991  df-p1 15992  df-lat 15998  df-clat 16060  df-oposet 32174  df-ol 32176  df-oml 32177  df-covers 32264  df-ats 32265  df-atl 32296  df-cvlat 32320  df-hlat 32349  df-llines 32495  df-lplanes 32496  df-lhyp 32985
This theorem is referenced by:  4atex2  33074
  Copyright terms: Public domain W3C validator