Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3vfriswmgralem Structured version   Unicode version

Theorem 3vfriswmgralem 30608
Description: Lemma for 3vfriswmgra 30609. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
3vfriswmgralem  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  B }  e.  ran  E  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E ) )
Distinct variable groups:    w, A    w, B    w, C    w, E    w, X    w, Y

Proof of Theorem 3vfriswmgralem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . . . . 7  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  { A ,  B }  e.  ran  E )
21olcd 393 . . . . . 6  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) )
3 preq2 3967 . . . . . . . . . 10  |-  ( w  =  A  ->  { A ,  w }  =  { A ,  A }
)
43eleq1d 2509 . . . . . . . . 9  |-  ( w  =  A  ->  ( { A ,  w }  e.  ran  E  <->  { A ,  A }  e.  ran  E ) )
5 preq2 3967 . . . . . . . . . 10  |-  ( w  =  B  ->  { A ,  w }  =  { A ,  B }
)
65eleq1d 2509 . . . . . . . . 9  |-  ( w  =  B  ->  ( { A ,  w }  e.  ran  E  <->  { A ,  B }  e.  ran  E ) )
74, 6rexprg 3938 . . . . . . . 8  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( E. w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E  <->  ( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) ) )
873ad2ant1 1009 . . . . . . 7  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <-> 
( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) ) )
98adantr 465 . . . . . 6  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <-> 
( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) ) )
102, 9mpbird 232 . . . . 5  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E )
11 df-rex 2733 . . . . 5  |-  ( E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <->  E. w ( w  e. 
{ A ,  B }  /\  { A ,  w }  e.  ran  E ) )
1210, 11sylib 196 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E. w
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E ) )
13 vex 2987 . . . . . . . . 9  |-  w  e. 
_V
1413elpr 3907 . . . . . . . 8  |-  ( w  e.  { A ,  B }  <->  ( w  =  A  \/  w  =  B ) )
15 vex 2987 . . . . . . . . . . . 12  |-  y  e. 
_V
1615elpr 3907 . . . . . . . . . . 11  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
17 eqidd 2444 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A )
1817a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) )
1918a1ii 27 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  ( { A ,  A }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) ) ) )
20 preq2 3967 . . . . . . . . . . . . . . . . 17  |-  ( y  =  A  ->  { A ,  y }  =  { A ,  A }
)
2120eleq1d 2509 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  ( { A ,  y }  e.  ran  E  <->  { A ,  A }  e.  ran  E ) )
22 eqeq2 2452 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  A  ->  ( A  =  y  <->  A  =  A ) )
2322imbi2d 316 . . . . . . . . . . . . . . . . 17  |-  ( y  =  A  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) ) )
2423imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) )  <->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) ) ) )
2519, 21, 243imtr4d 268 . . . . . . . . . . . . . . 15  |-  ( y  =  A  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
26 usgraedgrn 23312 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { A ,  B ,  C } USGrph  E  /\  { A ,  A }  e.  ran  E )  ->  A  =/=  A )
27 df-ne 2620 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =/=  A  <->  -.  A  =  A )
28 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  A  =  A
2928pm2.24i 144 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  A  =  A  ->  A  =  B )
3027, 29sylbi 195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  =/=  A  ->  A  =  B )
3126, 30syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( { A ,  B ,  C } USGrph  E  /\  { A ,  A }  e.  ran  E )  ->  A  =  B )
3231ex 434 . . . . . . . . . . . . . . . . . . . 20  |-  ( { A ,  B ,  C } USGrph  E  ->  ( { A ,  A }  e.  ran  E  ->  A  =  B ) )
33323ad2ant3 1011 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  A }  e.  ran  E  ->  A  =  B ) )
3433adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( { A ,  A }  e.  ran  E  ->  A  =  B ) )
3534com12 31 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) )
3635a1ii 27 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  ( { A ,  B }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) ) ) )
37 preq2 3967 . . . . . . . . . . . . . . . . 17  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
3837eleq1d 2509 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  ( { A ,  y }  e.  ran  E  <->  { A ,  B }  e.  ran  E ) )
39 eqeq2 2452 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
4039imbi2d 316 . . . . . . . . . . . . . . . . 17  |-  ( y  =  B  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) ) )
4140imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  (
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) )  <->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) ) ) )
4236, 38, 413imtr4d 268 . . . . . . . . . . . . . . 15  |-  ( y  =  B  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
4325, 42jaoi 379 . . . . . . . . . . . . . 14  |-  ( ( y  =  A  \/  y  =  B )  ->  ( { A , 
y }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
44 eqeq1 2449 . . . . . . . . . . . . . . . . 17  |-  ( w  =  A  ->  (
w  =  y  <->  A  =  y ) )
4544imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( w  =  A  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) )
464, 45imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( w  =  A  ->  (
( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) )  <->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
4746imbi2d 316 . . . . . . . . . . . . . 14  |-  ( w  =  A  ->  (
( { A , 
y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) )  <-> 
( { A , 
y }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) ) )
4843, 47syl5ibr 221 . . . . . . . . . . . . 13  |-  ( w  =  A  ->  (
( y  =  A  \/  y  =  B )  ->  ( { A ,  y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
4928pm2.24i 144 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  A  =  A  ->  B  =  A )
5027, 49sylbi 195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =/=  A  ->  B  =  A )
5126, 50syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { A ,  B ,  C } USGrph  E  /\  { A ,  A }  e.  ran  E )  ->  B  =  A )
5251ex 434 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { A ,  B ,  C } USGrph  E  ->  ( { A ,  A }  e.  ran  E  ->  B  =  A ) )
53523ad2ant3 1011 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  A }  e.  ran  E  ->  B  =  A ) )
5453adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( { A ,  A }  e.  ran  E  ->  B  =  A ) )
5554com12 31 . . . . . . . . . . . . . . . . . 18  |-  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) )
5655a1d 25 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  A }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) )
5756a1i 11 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  ( { A ,  A }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) ) )
58 eqeq2 2452 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  A  ->  ( B  =  y  <->  B  =  A ) )
5958imbi2d 316 . . . . . . . . . . . . . . . . 17  |-  ( y  =  A  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) )
6059imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) )  <->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) ) )
6157, 21, 603imtr4d 268 . . . . . . . . . . . . . . 15  |-  ( y  =  A  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
62 eqidd 2444 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B )
6362a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) )
6463a1ii 27 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  ( { A ,  B }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) ) ) )
65 eqeq2 2452 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  B  ->  ( B  =  y  <->  B  =  B ) )
6665imbi2d 316 . . . . . . . . . . . . . . . . 17  |-  ( y  =  B  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) ) )
6766imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  (
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) )  <->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) ) ) )
6864, 38, 673imtr4d 268 . . . . . . . . . . . . . . 15  |-  ( y  =  B  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
6961, 68jaoi 379 . . . . . . . . . . . . . 14  |-  ( ( y  =  A  \/  y  =  B )  ->  ( { A , 
y }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
70 eqeq1 2449 . . . . . . . . . . . . . . . . 17  |-  ( w  =  B  ->  (
w  =  y  <->  B  =  y ) )
7170imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( w  =  B  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) )
726, 71imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( w  =  B  ->  (
( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) )  <->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
7372imbi2d 316 . . . . . . . . . . . . . 14  |-  ( w  =  B  ->  (
( { A , 
y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) )  <-> 
( { A , 
y }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) ) )
7469, 73syl5ibr 221 . . . . . . . . . . . . 13  |-  ( w  =  B  ->  (
( y  =  A  \/  y  =  B )  ->  ( { A ,  y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7548, 74jaoi 379 . . . . . . . . . . . 12  |-  ( ( w  =  A  \/  w  =  B )  ->  ( ( y  =  A  \/  y  =  B )  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7675com3l 81 . . . . . . . . . . 11  |-  ( ( y  =  A  \/  y  =  B )  ->  ( { A , 
y }  e.  ran  E  ->  ( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7716, 76sylbi 195 . . . . . . . . . 10  |-  ( y  e.  { A ,  B }  ->  ( { A ,  y }  e.  ran  E  -> 
( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7877imp 429 . . . . . . . . 9  |-  ( ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E )  -> 
( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) )
7978com3l 81 . . . . . . . 8  |-  ( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  ( ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E )  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) )
8014, 79sylbi 195 . . . . . . 7  |-  ( w  e.  { A ,  B }  ->  ( { A ,  w }  e.  ran  E  ->  (
( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
)  ->  ( (
( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) )
8180imp31 432 . . . . . 6  |-  ( ( ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e. 
{ A ,  B }  /\  { A , 
y }  e.  ran  E ) )  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) )
8281com12 31 . . . . 5  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( (
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e. 
{ A ,  B }  /\  { A , 
y }  e.  ran  E ) )  ->  w  =  y ) )
8382alrimivv 1686 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A. w A. y ( ( ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
) )  ->  w  =  y ) )
84 eleq1 2503 . . . . . 6  |-  ( w  =  y  ->  (
w  e.  { A ,  B }  <->  y  e.  { A ,  B }
) )
85 preq2 3967 . . . . . . 7  |-  ( w  =  y  ->  { A ,  w }  =  { A ,  y }
)
8685eleq1d 2509 . . . . . 6  |-  ( w  =  y  ->  ( { A ,  w }  e.  ran  E  <->  { A ,  y }  e.  ran  E ) )
8784, 86anbi12d 710 . . . . 5  |-  ( w  =  y  ->  (
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  <-> 
( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
) ) )
8887eu4 2318 . . . 4  |-  ( E! w ( w  e. 
{ A ,  B }  /\  { A ,  w }  e.  ran  E )  <->  ( E. w
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  A. w A. y ( ( ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
) )  ->  w  =  y ) ) )
8912, 83, 88sylanbrc 664 . . 3  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E! w
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E ) )
90 df-reu 2734 . . 3  |-  ( E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <-> 
E! w ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E ) )
9189, 90sylibr 212 . 2  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E )
9291ex 434 1  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  B }  e.  ran  E  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   E!weu 2253    =/= wne 2618   E.wrex 2728   E!wreu 2729   {cpr 3891   {ctp 3893   class class class wbr 4304   ran crn 4853   USGrph cusg 23276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-n0 10592  df-z 10659  df-uz 10874  df-fz 11450  df-hash 12116  df-usgra 23278
This theorem is referenced by:  3vfriswmgra  30609
  Copyright terms: Public domain W3C validator