MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3vfriswmgra Structured version   Unicode version

Theorem 3vfriswmgra 25578
Description: Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
3vfriswmgra  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( V FriendGrph  E  ->  E. h  e.  V  A. v  e.  ( V  \  {
h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( V  \  { h }
) { v ,  w }  e.  ran  E ) ) )
Distinct variable groups:    A, h, v, w    B, h, v, w    C, h, v, w   
h, E, v, w   
h, V, v, w   
v, X, w    v, Y, w
Allowed substitution hints:    X( h)    Y( h)    Z( w, v, h)

Proof of Theorem 3vfriswmgra
StepHypRef Expression
1 frisusgra 25565 . . . 4  |-  ( { A ,  B ,  C } FriendGrph  E  ->  { A ,  B ,  C } USGrph  E )
2 frgra3v 25575 . . . . . . . . 9  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  ( { A ,  B ,  C } USGrph  E  ->  ( { A ,  B ,  C } FriendGrph  E  <->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) ) ) )
323adant3 1025 . . . . . . . 8  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( { A ,  B ,  C } USGrph  E  ->  ( { A ,  B ,  C } FriendGrph  E  <-> 
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) ) ) )
43imp 430 . . . . . . 7  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( { A ,  B ,  C } FriendGrph  E  <-> 
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) ) )
5 prcom 4081 . . . . . . . . . . . . . . . . . 18  |-  { C ,  A }  =  { A ,  C }
65eleq1i 2506 . . . . . . . . . . . . . . . . 17  |-  ( { C ,  A }  e.  ran  E  <->  { A ,  C }  e.  ran  E )
76biimpi 197 . . . . . . . . . . . . . . . 16  |-  ( { C ,  A }  e.  ran  E  ->  { A ,  C }  e.  ran  E )
873ad2ant3 1028 . . . . . . . . . . . . . . 15  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  { A ,  C }  e.  ran  E )
98adantl 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  { A ,  C }  e.  ran  E )
10 id 23 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A  e.  X  /\  B  e.  Y
) )
11103adant3 1025 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A  e.  X  /\  B  e.  Y
) )
12113ad2ant1 1026 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( A  e.  X  /\  B  e.  Y
) )
1312adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( A  e.  X  /\  B  e.  Y
) )
14 id 23 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =/=  B  ->  A  =/=  B )
15143ad2ant1 1026 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  A  =/=  B )
16153ad2ant2 1027 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  ->  A  =/=  B )
1716adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  ->  A  =/=  B )
18 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  ->  { A ,  B ,  C } USGrph  E )
1913, 17, 183jca 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E ) )
20 id 23 . . . . . . . . . . . . . . . 16  |-  ( { A ,  B }  e.  ran  E  ->  { A ,  B }  e.  ran  E )
21203ad2ant1 1026 . . . . . . . . . . . . . . 15  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  { A ,  B }  e.  ran  E )
22 3vfriswmgralem 25577 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  B }  e.  ran  E  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E ) )
2322imp 430 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E )
2419, 21, 23syl2an 479 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E )
259, 24jca 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( { A ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E ) )
26 simpr2 1012 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  { B ,  C }  e.  ran  E )
27 pm3.22 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( B  e.  Y  /\  A  e.  X
) )
28273adant3 1025 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( B  e.  Y  /\  A  e.  X
) )
29283ad2ant1 1026 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( B  e.  Y  /\  A  e.  X
) )
3029adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( B  e.  Y  /\  A  e.  X
) )
31 necom 2700 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  =/=  B  <->  B  =/=  A )
3231biimpi 197 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =/=  B  ->  B  =/=  A )
33323ad2ant1 1026 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  B  =/=  A )
34333ad2ant2 1027 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  ->  B  =/=  A )
3534adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  ->  B  =/=  A )
36 tpcoma 4099 . . . . . . . . . . . . . . . . . . 19  |-  { A ,  B ,  C }  =  { B ,  A ,  C }
3736breq1i 4433 . . . . . . . . . . . . . . . . . 18  |-  ( { A ,  B ,  C } USGrph  E  <->  { B ,  A ,  C } USGrph  E )
3837biimpi 197 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  B ,  C } USGrph  E  ->  { B ,  A ,  C } USGrph  E )
3938adantl 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  ->  { B ,  A ,  C } USGrph  E )
4030, 35, 393jca 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( ( B  e.  Y  /\  A  e.  X )  /\  B  =/=  A  /\  { B ,  A ,  C } USGrph  E ) )
41 prcom 4081 . . . . . . . . . . . . . . . . . 18  |-  { A ,  B }  =  { B ,  A }
4241eleq1i 2506 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  B }  e.  ran  E  <->  { B ,  A }  e.  ran  E )
4342biimpi 197 . . . . . . . . . . . . . . . 16  |-  ( { A ,  B }  e.  ran  E  ->  { B ,  A }  e.  ran  E )
44433ad2ant1 1026 . . . . . . . . . . . . . . 15  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  { B ,  A }  e.  ran  E )
45 3vfriswmgralem 25577 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  Y  /\  A  e.  X
)  /\  B  =/=  A  /\  { B ,  A ,  C } USGrph  E )  ->  ( { B ,  A }  e.  ran  E  ->  E! w  e.  { B ,  A }  { B ,  w }  e.  ran  E ) )
4645imp 430 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  Y  /\  A  e.  X )  /\  B  =/=  A  /\  { B ,  A ,  C } USGrph  E )  /\  { B ,  A }  e.  ran  E )  ->  E! w  e.  { B ,  A }  { B ,  w }  e.  ran  E )
47 reueq1 3034 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  B }  =  { B ,  A }  ->  ( E! w  e.  { A ,  B }  { B ,  w }  e.  ran  E  <->  E! w  e.  { B ,  A }  { B ,  w }  e.  ran  E ) )
4841, 47ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( E! w  e.  { A ,  B }  { B ,  w }  e.  ran  E  <-> 
E! w  e.  { B ,  A }  { B ,  w }  e.  ran  E )
4946, 48sylibr 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  Y  /\  A  e.  X )  /\  B  =/=  A  /\  { B ,  A ,  C } USGrph  E )  /\  { B ,  A }  e.  ran  E )  ->  E! w  e.  { A ,  B }  { B ,  w }  e.  ran  E )
5040, 44, 49syl2an 479 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E )
5126, 50jca 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( { B ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E ) )
5225, 51jca 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( ( { A ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { B ,  w }  e.  ran  E ) ) )
53 preq1 4082 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  A  ->  { v ,  C }  =  { A ,  C }
)
5453eleq1d 2498 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  A  ->  ( { v ,  C }  e.  ran  E  <->  { A ,  C }  e.  ran  E ) )
55 preq1 4082 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  A  ->  { v ,  w }  =  { A ,  w }
)
5655eleq1d 2498 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  A  ->  ( { v ,  w }  e.  ran  E  <->  { A ,  w }  e.  ran  E ) )
5756reubidv 3020 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  A  ->  ( E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E  <->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E ) )
5854, 57anbi12d 715 . . . . . . . . . . . . . . . . 17  |-  ( v  =  A  ->  (
( { v ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { v ,  w }  e.  ran  E )  <-> 
( { A ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E ) ) )
59 preq1 4082 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  B  ->  { v ,  C }  =  { B ,  C }
)
6059eleq1d 2498 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  B  ->  ( { v ,  C }  e.  ran  E  <->  { B ,  C }  e.  ran  E ) )
61 preq1 4082 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  B  ->  { v ,  w }  =  { B ,  w }
)
6261eleq1d 2498 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  B  ->  ( { v ,  w }  e.  ran  E  <->  { B ,  w }  e.  ran  E ) )
6362reubidv 3020 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  B  ->  ( E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E  <->  E! w  e.  { A ,  B }  { B ,  w }  e.  ran  E ) )
6460, 63anbi12d 715 . . . . . . . . . . . . . . . . 17  |-  ( v  =  B  ->  (
( { v ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { v ,  w }  e.  ran  E )  <-> 
( { B ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E ) ) )
6558, 64ralprg 4052 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A. v  e. 
{ A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E )  <-> 
( ( { A ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E ) ) ) )
66653adant3 1025 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A. v  e. 
{ A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E )  <-> 
( ( { A ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E ) ) ) )
67663ad2ant1 1026 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( A. v  e. 
{ A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E )  <-> 
( ( { A ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E ) ) ) )
6867adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( A. v  e. 
{ A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E )  <-> 
( ( { A ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E ) ) ) )
6968adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( A. v  e.  { A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E )  <-> 
( ( { A ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { B ,  w }  e.  ran  E ) ) ) )
7052, 69mpbird 235 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  A. v  e.  { A ,  B } 
( { v ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { v ,  w }  e.  ran  E ) )
71 diftpsn3 4141 . . . . . . . . . . . . . . . 16  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
72713adant1 1023 . . . . . . . . . . . . . . 15  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( { A ,  B ,  C }  \  { C } )  =  { A ,  B }
)
73 reueq1 3034 . . . . . . . . . . . . . . . . 17  |-  ( ( { A ,  B ,  C }  \  { C } )  =  { A ,  B }  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E  <->  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E ) )
7472, 73syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E  <->  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E ) )
7574anbi2d 708 . . . . . . . . . . . . . . 15  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  (
( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E )  <-> 
( { v ,  C }  e.  ran  E  /\  E! w  e. 
{ A ,  B }  { v ,  w }  e.  ran  E ) ) )
7672, 75raleqbidv 3046 . . . . . . . . . . . . . 14  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E )  <->  A. v  e.  { A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E ) ) )
77763ad2ant2 1027 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E )  <->  A. v  e.  { A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E ) ) )
7877adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E )  <->  A. v  e.  { A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E ) ) )
7978adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E )  <->  A. v  e.  { A ,  B }  ( { v ,  C }  e.  ran  E  /\  E! w  e.  { A ,  B }  { v ,  w }  e.  ran  E ) ) )
8070, 79mpbird 235 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) )
81803mix3d 1182 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( A. v  e.  ( { A ,  B ,  C }  \  { A } ) ( { v ,  A }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { B } ) ( { v ,  B }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) ) )
82 sneq 4012 . . . . . . . . . . . . . . 15  |-  ( h  =  A  ->  { h }  =  { A } )
8382difeq2d 3589 . . . . . . . . . . . . . 14  |-  ( h  =  A  ->  ( { A ,  B ,  C }  \  { h } )  =  ( { A ,  B ,  C }  \  { A } ) )
84 preq2 4083 . . . . . . . . . . . . . . . 16  |-  ( h  =  A  ->  { v ,  h }  =  { v ,  A } )
8584eleq1d 2498 . . . . . . . . . . . . . . 15  |-  ( h  =  A  ->  ( { v ,  h }  e.  ran  E  <->  { v ,  A }  e.  ran  E ) )
86 reueq1 3034 . . . . . . . . . . . . . . . 16  |-  ( ( { A ,  B ,  C }  \  {
h } )  =  ( { A ,  B ,  C }  \  { A } )  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E ) )
8783, 86syl 17 . . . . . . . . . . . . . . 15  |-  ( h  =  A  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E ) )
8885, 87anbi12d 715 . . . . . . . . . . . . . 14  |-  ( h  =  A  ->  (
( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <-> 
( { v ,  A }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E ) ) )
8983, 88raleqbidv 3046 . . . . . . . . . . . . 13  |-  ( h  =  A  ->  ( A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <->  A. v  e.  ( { A ,  B ,  C }  \  { A } ) ( { v ,  A }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E ) ) )
90 sneq 4012 . . . . . . . . . . . . . . 15  |-  ( h  =  B  ->  { h }  =  { B } )
9190difeq2d 3589 . . . . . . . . . . . . . 14  |-  ( h  =  B  ->  ( { A ,  B ,  C }  \  { h } )  =  ( { A ,  B ,  C }  \  { B } ) )
92 preq2 4083 . . . . . . . . . . . . . . . 16  |-  ( h  =  B  ->  { v ,  h }  =  { v ,  B } )
9392eleq1d 2498 . . . . . . . . . . . . . . 15  |-  ( h  =  B  ->  ( { v ,  h }  e.  ran  E  <->  { v ,  B }  e.  ran  E ) )
94 reueq1 3034 . . . . . . . . . . . . . . . 16  |-  ( ( { A ,  B ,  C }  \  {
h } )  =  ( { A ,  B ,  C }  \  { B } )  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E ) )
9591, 94syl 17 . . . . . . . . . . . . . . 15  |-  ( h  =  B  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E ) )
9693, 95anbi12d 715 . . . . . . . . . . . . . 14  |-  ( h  =  B  ->  (
( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <-> 
( { v ,  B }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E ) ) )
9791, 96raleqbidv 3046 . . . . . . . . . . . . 13  |-  ( h  =  B  ->  ( A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <->  A. v  e.  ( { A ,  B ,  C }  \  { B } ) ( { v ,  B }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E ) ) )
98 sneq 4012 . . . . . . . . . . . . . . 15  |-  ( h  =  C  ->  { h }  =  { C } )
9998difeq2d 3589 . . . . . . . . . . . . . 14  |-  ( h  =  C  ->  ( { A ,  B ,  C }  \  { h } )  =  ( { A ,  B ,  C }  \  { C } ) )
100 preq2 4083 . . . . . . . . . . . . . . . 16  |-  ( h  =  C  ->  { v ,  h }  =  { v ,  C } )
101100eleq1d 2498 . . . . . . . . . . . . . . 15  |-  ( h  =  C  ->  ( { v ,  h }  e.  ran  E  <->  { v ,  C }  e.  ran  E ) )
102 reueq1 3034 . . . . . . . . . . . . . . . 16  |-  ( ( { A ,  B ,  C }  \  {
h } )  =  ( { A ,  B ,  C }  \  { C } )  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) )
10399, 102syl 17 . . . . . . . . . . . . . . 15  |-  ( h  =  C  ->  ( E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) )
104101, 103anbi12d 715 . . . . . . . . . . . . . 14  |-  ( h  =  C  ->  (
( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <-> 
( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) ) )
10599, 104raleqbidv 3046 . . . . . . . . . . . . 13  |-  ( h  =  C  ->  ( A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <->  A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) ) )
10689, 97, 105rextpg 4055 . . . . . . . . . . . 12  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( E. h  e. 
{ A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <-> 
( A. v  e.  ( { A ,  B ,  C }  \  { A } ) ( { v ,  A }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { B } ) ( { v ,  B }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) ) ) )
1071063ad2ant1 1026 . . . . . . . . . . 11  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( E. h  e. 
{ A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <-> 
( A. v  e.  ( { A ,  B ,  C }  \  { A } ) ( { v ,  A }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { B } ) ( { v ,  B }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) ) ) )
108107adantr 466 . . . . . . . . . 10  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( E. h  e. 
{ A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <-> 
( A. v  e.  ( { A ,  B ,  C }  \  { A } ) ( { v ,  A }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { B } ) ( { v ,  B }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) ) ) )
109108adantr 466 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E )  <-> 
( A. v  e.  ( { A ,  B ,  C }  \  { A } ) ( { v ,  A }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { A } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { B } ) ( { v ,  B }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { B } ) { v ,  w }  e.  ran  E )  \/  A. v  e.  ( { A ,  B ,  C }  \  { C } ) ( { v ,  C }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { C } ) { v ,  w }  e.  ran  E ) ) ) )
11081, 109mpbird 235 . . . . . . . 8  |-  ( ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) )
111110ex 435 . . . . . . 7  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) )
1124, 111sylbid 218 . . . . . 6  |-  ( ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  /\  { A ,  B ,  C } USGrph  E )  -> 
( { A ,  B ,  C } FriendGrph  E  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) )
113112expcom 436 . . . . 5  |-  ( { A ,  B ,  C } USGrph  E  ->  (
( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  -> 
( { A ,  B ,  C } FriendGrph  E  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) ) )
114113com23 81 . . . 4  |-  ( { A ,  B ,  C } USGrph  E  ->  ( { A ,  B ,  C } FriendGrph  E  ->  (
( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) ) )
1151, 114mpcom 37 . . 3  |-  ( { A ,  B ,  C } FriendGrph  E  ->  (
( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )  /\  V  =  { A ,  B ,  C } )  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) )
116115com12 32 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( { A ,  B ,  C } FriendGrph  E  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) )
117 breq1 4429 . . . 4  |-  ( V  =  { A ,  B ,  C }  ->  ( V FriendGrph  E  <->  { A ,  B ,  C } FriendGrph  E ) )
118 difeq1 3582 . . . . . 6  |-  ( V  =  { A ,  B ,  C }  ->  ( V  \  {
h } )  =  ( { A ,  B ,  C }  \  { h } ) )
119 reueq1 3034 . . . . . . . 8  |-  ( ( V  \  { h } )  =  ( { A ,  B ,  C }  \  {
h } )  -> 
( E! w  e.  ( V  \  {
h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) )
120118, 119syl 17 . . . . . . 7  |-  ( V  =  { A ,  B ,  C }  ->  ( E! w  e.  ( V  \  {
h } ) { v ,  w }  e.  ran  E  <->  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) )
121120anbi2d 708 . . . . . 6  |-  ( V  =  { A ,  B ,  C }  ->  ( ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( V  \  {
h } ) { v ,  w }  e.  ran  E )  <->  ( {
v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) )
122118, 121raleqbidv 3046 . . . . 5  |-  ( V  =  { A ,  B ,  C }  ->  ( A. v  e.  ( V  \  {
h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( V  \  { h }
) { v ,  w }  e.  ran  E )  <->  A. v  e.  ( { A ,  B ,  C }  \  {
h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) )
123122rexeqbi1dv 3041 . . . 4  |-  ( V  =  { A ,  B ,  C }  ->  ( E. h  e.  V  A. v  e.  ( V  \  {
h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( V  \  { h }
) { v ,  w }  e.  ran  E )  <->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) )
124117, 123imbi12d 321 . . 3  |-  ( V  =  { A ,  B ,  C }  ->  ( ( V FriendGrph  E  ->  E. h  e.  V  A. v  e.  ( V  \  { h }
) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( V  \  {
h } ) { v ,  w }  e.  ran  E ) )  <-> 
( { A ,  B ,  C } FriendGrph  E  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) ) )
1251243ad2ant3 1028 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( ( V FriendGrph  E  ->  E. h  e.  V  A. v  e.  ( V  \  { h }
) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( V  \  {
h } ) { v ,  w }  e.  ran  E ) )  <-> 
( { A ,  B ,  C } FriendGrph  E  ->  E. h  e.  { A ,  B ,  C } A. v  e.  ( { A ,  B ,  C }  \  { h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( { A ,  B ,  C }  \  { h } ) { v ,  w }  e.  ran  E ) ) ) )
126116, 125mpbird 235 1  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C )  /\  V  =  { A ,  B ,  C } )  -> 
( V FriendGrph  E  ->  E. h  e.  V  A. v  e.  ( V  \  {
h } ) ( { v ,  h }  e.  ran  E  /\  E! w  e.  ( V  \  { h }
) { v ,  w }  e.  ran  E ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    \/ w3o 981    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   E!wreu 2784    \ cdif 3439   {csn 4002   {cpr 4004   {ctp 4006   class class class wbr 4426   ran crn 4855   USGrph cusg 24903   FriendGrph cfrgra 25561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-hash 12513  df-usgra 24906  df-frgra 25562
This theorem is referenced by:  1to3vfriswmgra  25580
  Copyright terms: Public domain W3C validator