MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3v3e3cycl2 Structured version   Unicode version

Theorem 3v3e3cycl2 25081
Description: If there are three (different) vertices in a graph which are mutually connected by edges, there is a 3-cycle in the graph. (Contributed by Alexander van der Vekens, 14-Nov-2017.)
Assertion
Ref Expression
3v3e3cycl2  |-  ( V USGrph  E  ->  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) ) )
Distinct variable groups:    E, a,
b, c, f, p    V, a, b, c, f, p

Proof of Theorem 3v3e3cycl2
StepHypRef Expression
1 df-rex 2760 . . 3  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. a ( a  e.  V  /\  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )
2 df-rex 2760 . . . . . 6  |-  ( E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. b ( b  e.  V  /\  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )
3 df-rex 2760 . . . . . . . 8  |-  ( E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )
43anbi2i 692 . . . . . . 7  |-  ( ( b  e.  V  /\  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  <->  ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )
54exbii 1688 . . . . . 6  |-  ( E. b ( b  e.  V  /\  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  <->  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )
62, 5bitri 249 . . . . 5  |-  ( E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )
76anbi2i 692 . . . 4  |-  ( ( a  e.  V  /\  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  <->  ( a  e.  V  /\  E. b
( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) ) ) )
87exbii 1688 . . 3  |-  ( E. a ( a  e.  V  /\  E. b  e.  V  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  <->  E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) ) )
91, 8bitri 249 . 2  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) ) )
10 19.41v 1795 . . . 4  |-  ( E. a ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  ( E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )
)
11 ancom 448 . . . . . . . . 9  |-  ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  <-> 
( E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V ) )
12 19.41v 1795 . . . . . . . . 9  |-  ( E. b ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  <->  ( E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )
)
1311, 12bitr4i 252 . . . . . . . 8  |-  ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  <->  E. b ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V ) )
1413anbi1i 693 . . . . . . 7  |-  ( ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  ( E. b ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E ) )
15 19.41v 1795 . . . . . . 7  |-  ( E. b ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  ( E. b
( ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E ) )
16 anass 647 . . . . . . . . 9  |-  ( ( ( ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  ( (
b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
17 ancom 448 . . . . . . . . . . . 12  |-  ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  <->  ( E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V ) )
18 19.41v 1795 . . . . . . . . . . . 12  |-  ( E. c ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  <->  ( E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V ) )
1917, 18bitr4i 252 . . . . . . . . . . 11  |-  ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  <->  E. c
( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V ) )
2019anbi1i 693 . . . . . . . . . 10  |-  ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )  /\  ( a  e.  V  /\  V USGrph  E ) )  <-> 
( E. c ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
21 19.41v 1795 . . . . . . . . . 10  |-  ( E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  <->  ( E. c ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2220, 21bitr4i 252 . . . . . . . . 9  |-  ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )  /\  ( a  e.  V  /\  V USGrph  E ) )  <->  E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2316, 22bitri 249 . . . . . . . 8  |-  ( ( ( ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  E. c
( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2423exbii 1688 . . . . . . 7  |-  ( E. b ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  E. b E. c
( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2514, 15, 243bitr2i 273 . . . . . 6  |-  ( ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2625exbii 1688 . . . . 5  |-  ( E. a ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  E. a E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
27 simprr 758 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  V USGrph  E )
28 simprl 756 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
a  e.  V )
29 simplr 754 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
b  e.  V )
30 simplll 760 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
c  e.  V )
31 simplr 754 . . . . . . . . . 10  |-  ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  ->  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )
3231adantr 463 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )
33 eqid 2402 . . . . . . . . . 10  |-  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }
34 eqid 2402 . . . . . . . . . 10  |-  ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )  =  ( { <. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )
3533, 34constr3cycl 25078 . . . . . . . . 9  |-  ( ( V USGrph  E  /\  (
a  e.  V  /\  b  e.  V  /\  c  e.  V )  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  ->  ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
3627, 28, 29, 30, 32, 35syl131anc 1243 . . . . . . . 8  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
( { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ( V Cycles  E ) ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
3736eximi 1677 . . . . . . 7  |-  ( E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
38372eximi 1678 . . . . . 6  |-  ( E. a E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  E. a E. b E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
39 tpex 6581 . . . . . . . . 9  |-  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  e.  _V
40 prex 4633 . . . . . . . . . 10  |-  { <. 0 ,  a >. , 
<. 1 ,  b
>. }  e.  _V
41 prex 4633 . . . . . . . . . 10  |-  { <. 2 ,  c >. , 
<. 3 ,  a
>. }  e.  _V
4240, 41unex 6580 . . . . . . . . 9  |-  ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )  e.  _V
43 breq12 4400 . . . . . . . . . 10  |-  ( ( f  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  /\  p  =  ( { <. 0 ,  a >. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a >. } ) )  ->  (
f ( V Cycles  E
) p  <->  { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ( V Cycles  E ) ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } ) ) )
44 fveq2 5849 . . . . . . . . . . . 12  |-  ( f  =  { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ->  (
# `  f )  =  ( # `  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. } ) )
4544eqeq1d 2404 . . . . . . . . . . 11  |-  ( f  =  { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ->  ( ( # `  f
)  =  3  <->  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
4645adantr 463 . . . . . . . . . 10  |-  ( ( f  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  /\  p  =  ( { <. 0 ,  a >. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a >. } ) )  ->  (
( # `  f )  =  3  <->  ( # `  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. } )  =  3 ) )
4743, 46anbi12d 709 . . . . . . . . 9  |-  ( ( f  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  /\  p  =  ( { <. 0 ,  a >. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a >. } ) )  ->  (
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 )  <->  ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) ) )
4839, 42, 47spc2ev 3152 . . . . . . . 8  |-  ( ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
4948exlimiv 1743 . . . . . . 7  |-  ( E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
5049exlimivv 1744 . . . . . 6  |-  ( E. a E. b E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
5138, 50syl 17 . . . . 5  |-  ( E. a E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
5226, 51sylbi 195 . . . 4  |-  ( E. a ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) )
5310, 52sylbir 213 . . 3  |-  ( ( E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) )
5453expcom 433 . 2  |-  ( V USGrph  E  ->  ( E. a
( a  e.  V  /\  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) ) )
559, 54syl5bi 217 1  |-  ( V USGrph  E  ->  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842   E.wrex 2755    u. cun 3412   {cpr 3974   {ctp 3976   <.cop 3978   class class class wbr 4395   `'ccnv 4822   ran crn 4824   ` cfv 5569  (class class class)co 6278   0cc0 9522   1c1 9523   2c2 10626   3c3 10627   #chash 12452   USGrph cusg 24747   Cycles ccycl 24924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-fzo 11855  df-hash 12453  df-word 12591  df-usgra 24750  df-wlk 24925  df-trail 24926  df-pth 24927  df-cycl 24930
This theorem is referenced by:  3v3e3cycl  25082
  Copyright terms: Public domain W3C validator