MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3v3e3cycl2 Structured version   Unicode version

Theorem 3v3e3cycl2 23695
Description: If there are three (different) vertices in a graph which are mutually connected by edges, there is a 3-cycle in the graph. (Contributed by Alexander van der Vekens, 14-Nov-2017.)
Assertion
Ref Expression
3v3e3cycl2  |-  ( V USGrph  E  ->  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) ) )
Distinct variable groups:    E, a,
b, c, f, p    V, a, b, c, f, p

Proof of Theorem 3v3e3cycl2
StepHypRef Expression
1 df-rex 2801 . . 3  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. a ( a  e.  V  /\  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )
2 df-rex 2801 . . . . . 6  |-  ( E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. b ( b  e.  V  /\  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )
3 df-rex 2801 . . . . . . . 8  |-  ( E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )
43anbi2i 694 . . . . . . 7  |-  ( ( b  e.  V  /\  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  <->  ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )
54exbii 1635 . . . . . 6  |-  ( E. b ( b  e.  V  /\  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  <->  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )
62, 5bitri 249 . . . . 5  |-  ( E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )
76anbi2i 694 . . . 4  |-  ( ( a  e.  V  /\  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  <->  ( a  e.  V  /\  E. b
( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) ) ) )
87exbii 1635 . . 3  |-  ( E. a ( a  e.  V  /\  E. b  e.  V  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  <->  E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) ) )
91, 8bitri 249 . 2  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
)  <->  E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) ) )
10 19.41v 1929 . . . 4  |-  ( E. a ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  ( E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )
)
11 ancom 450 . . . . . . . . 9  |-  ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  <-> 
( E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V ) )
12 19.41v 1929 . . . . . . . . 9  |-  ( E. b ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  <->  ( E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )
)
1311, 12bitr4i 252 . . . . . . . 8  |-  ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  <->  E. b ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V ) )
1413anbi1i 695 . . . . . . 7  |-  ( ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  ( E. b ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E ) )
15 19.41v 1929 . . . . . . 7  |-  ( E. b ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  ( E. b
( ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E ) )
16 anass 649 . . . . . . . . 9  |-  ( ( ( ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  ( (
b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
17 ancom 450 . . . . . . . . . . . 12  |-  ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  <->  ( E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V ) )
18 19.41v 1929 . . . . . . . . . . . 12  |-  ( E. c ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  <->  ( E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V ) )
1917, 18bitr4i 252 . . . . . . . . . . 11  |-  ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  <->  E. c
( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V ) )
2019anbi1i 695 . . . . . . . . . 10  |-  ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )  /\  ( a  e.  V  /\  V USGrph  E ) )  <-> 
( E. c ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
21 19.41v 1929 . . . . . . . . . 10  |-  ( E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  <->  ( E. c ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2220, 21bitr4i 252 . . . . . . . . 9  |-  ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) ) )  /\  ( a  e.  V  /\  V USGrph  E ) )  <->  E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2316, 22bitri 249 . . . . . . . 8  |-  ( ( ( ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  E. c
( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2423exbii 1635 . . . . . . 7  |-  ( E. b ( ( ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) )  /\  a  e.  V )  /\  V USGrph  E )  <->  E. b E. c
( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2514, 15, 243bitr2i 273 . . . . . 6  |-  ( ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
2625exbii 1635 . . . . 5  |-  ( E. a ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  <->  E. a E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) ) )
27 simprr 756 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  V USGrph  E )
28 simprl 755 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
a  e.  V )
29 simplr 754 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
b  e.  V )
30 simplll 757 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
c  e.  V )
31 simplr 754 . . . . . . . . . 10  |-  ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  ->  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )
3231adantr 465 . . . . . . . . 9  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )
33 eqid 2451 . . . . . . . . . 10  |-  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }
34 eqid 2451 . . . . . . . . . 10  |-  ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )  =  ( { <. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )
3533, 34constr3cycl 23692 . . . . . . . . 9  |-  ( ( V USGrph  E  /\  (
a  e.  V  /\  b  e.  V  /\  c  e.  V )  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  ->  ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
3627, 28, 29, 30, 32, 35syl131anc 1232 . . . . . . . 8  |-  ( ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  -> 
( { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ( V Cycles  E ) ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
3736eximi 1626 . . . . . . 7  |-  ( E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
38372eximi 1627 . . . . . 6  |-  ( E. a E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  E. a E. b E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
39 tpex 6482 . . . . . . . . 9  |-  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  e.  _V
40 prex 4635 . . . . . . . . . 10  |-  { <. 0 ,  a >. , 
<. 1 ,  b
>. }  e.  _V
41 prex 4635 . . . . . . . . . 10  |-  { <. 2 ,  c >. , 
<. 3 ,  a
>. }  e.  _V
4240, 41unex 6481 . . . . . . . . 9  |-  ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } )  e.  _V
43 breq12 4398 . . . . . . . . . 10  |-  ( ( f  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  /\  p  =  ( { <. 0 ,  a >. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a >. } ) )  ->  (
f ( V Cycles  E
) p  <->  { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ( V Cycles  E ) ( {
<. 0 ,  a
>. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a
>. } ) ) )
44 fveq2 5792 . . . . . . . . . . . 12  |-  ( f  =  { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ->  (
# `  f )  =  ( # `  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. } ) )
4544eqeq1d 2453 . . . . . . . . . . 11  |-  ( f  =  { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. }  ->  ( ( # `  f
)  =  3  <->  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) )
4645adantr 465 . . . . . . . . . 10  |-  ( ( f  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  /\  p  =  ( { <. 0 ,  a >. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a >. } ) )  ->  (
( # `  f )  =  3  <->  ( # `  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. } )  =  3 ) )
4743, 46anbi12d 710 . . . . . . . . 9  |-  ( ( f  =  { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  /\  p  =  ( { <. 0 ,  a >. ,  <. 1 ,  b >. }  u.  { <. 2 ,  c >. ,  <. 3 ,  a >. } ) )  ->  (
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 )  <->  ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 ) ) )
4839, 42, 47spc2ev 3164 . . . . . . . 8  |-  ( ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
4948exlimiv 1689 . . . . . . 7  |-  ( E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
5049exlimivv 1690 . . . . . 6  |-  ( E. a E. b E. c ( { <. 0 ,  ( `' E `  { a ,  b } )
>. ,  <. 1 ,  ( `' E `  { b ,  c } ) >. ,  <. 2 ,  ( `' E `  { c ,  a } )
>. }  ( V Cycles  E
) ( { <. 0 ,  a >. , 
<. 1 ,  b
>. }  u.  { <. 2 ,  c >. , 
<. 3 ,  a
>. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { a ,  b } ) >. ,  <. 1 ,  ( `' E `  { b ,  c } )
>. ,  <. 2 ,  ( `' E `  { c ,  a } ) >. } )  =  3 )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
5138, 50syl 16 . . . . 5  |-  ( E. a E. b E. c ( ( ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E
) )  /\  b  e.  V )  /\  (
a  e.  V  /\  V USGrph  E ) )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) )
5226, 51sylbi 195 . . . 4  |-  ( E. a ( ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) )
5310, 52sylbir 213 . . 3  |-  ( ( E. a ( a  e.  V  /\  E. b ( b  e.  V  /\  E. c
( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  /\  V USGrph  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) )
5453expcom 435 . 2  |-  ( V USGrph  E  ->  ( E. a
( a  e.  V  /\  E. b ( b  e.  V  /\  E. c ( c  e.  V  /\  ( { a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E ) ) ) )  ->  E. f E. p ( f ( V Cycles  E
) p  /\  ( # `
 f )  =  3 ) ) )
559, 54syl5bi 217 1  |-  ( V USGrph  E  ->  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  ( {
a ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  a }  e.  ran  E )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2796    u. cun 3427   {cpr 3980   {ctp 3982   <.cop 3984   class class class wbr 4393   `'ccnv 4940   ran crn 4942   ` cfv 5519  (class class class)co 6193   0cc0 9386   1c1 9387   2c2 10475   3c3 10476   #chash 12213   USGrph cusg 23409   Cycles ccycl 23559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-map 7319  df-pm 7320  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-card 8213  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-3 10485  df-n0 10684  df-z 10751  df-uz 10966  df-fz 11548  df-fzo 11659  df-hash 12214  df-word 12340  df-usgra 23411  df-wlk 23560  df-trail 23561  df-pth 23562  df-cycl 23565
This theorem is referenced by:  3v3e3cycl  23696
  Copyright terms: Public domain W3C validator