MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3i Structured version   Unicode version

Theorem 3sstr3i 3527
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1  |-  A  C_  B
3sstr3.2  |-  A  =  C
3sstr3.3  |-  B  =  D
Assertion
Ref Expression
3sstr3i  |-  C  C_  D

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.1 . 2  |-  A  C_  B
2 3sstr3.2 . . 3  |-  A  =  C
3 3sstr3.3 . . 3  |-  B  =  D
42, 3sseq12i 3515 . 2  |-  ( A 
C_  B  <->  C  C_  D
)
51, 4mpbi 208 1  |-  C  C_  D
Colors of variables: wff setvar class
Syntax hints:    = wceq 1383    C_ wss 3461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-in 3468  df-ss 3475
This theorem is referenced by:  odf1o2  16467  leordtval2  19586  uniiccvol  21862  ballotlem2  28300
  Copyright terms: Public domain W3C validator