Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3g Structured version   Unicode version

Theorem 3sstr3g 3529
 Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3g.1
3sstr3g.2
3sstr3g.3
Assertion
Ref Expression
3sstr3g

Proof of Theorem 3sstr3g
StepHypRef Expression
1 3sstr3g.1 . 2
2 3sstr3g.2 . . 3
3 3sstr3g.3 . . 3
42, 3sseq12i 3515 . 2
51, 4sylib 196 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1383   wss 3461 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-in 3468  df-ss 3475 This theorem is referenced by:  uniintsn  4309  fpwwe2lem13  9023  hmeocls  20247  hmeontr  20248  chsscon3i  26357  pjss1coi  27060  mdslmd2i  27227  ssbnd  30260  bnd2lem  30263  nzss  31198
 Copyright terms: Public domain W3C validator