Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3orbi123VD Structured version   Visualization version   Unicode version

Theorem 3orbi123VD 37256
Description: Virtual deduction proof of 3orbi123 36879. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: 2:1,?: e1a 37017 3:1,?: e1a 37017 4:1,?: e1a 37017 5:2,3,?: e11 37078 6:5,4,?: e11 37078 7:?: 8:6,7,?: e10 37084 9:?: 10:8,9,?: e10 37084 qed:10:
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3orbi123VD

Proof of Theorem 3orbi123VD
StepHypRef Expression
1 idn1 36955 . . . . . . 7
2 simp1 1009 . . . . . . 7
31, 2e1a 37017 . . . . . 6
4 simp2 1010 . . . . . . 7
51, 4e1a 37017 . . . . . 6
6 pm4.39 883 . . . . . . 7
76ex 436 . . . . . 6
83, 5, 7e11 37078 . . . . 5
9 simp3 1011 . . . . . 6
101, 9e1a 37017 . . . . 5
11 pm4.39 883 . . . . . 6
1211ex 436 . . . . 5
138, 10, 12e11 37078 . . . 4
14 df-3or 987 . . . . 5
1514bicomi 206 . . . 4
16 bitr3 36878 . . . . 5
1716com12 32 . . . 4
1813, 15, 17e10 37084 . . 3
19 df-3or 987 . . . 4
2019bicomi 206 . . 3
21 bitr 716 . . . 4
2221ex 436 . . 3
2318, 20, 22e10 37084 . 2
2423in1 36952 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 188   wo 370   w3o 985   w3a 986 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-vd1 36951 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator