HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem1 Structured version   Unicode version

Theorem 3oalem1 26706
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1  |-  B  e. 
CH
3oalem1.2  |-  C  e. 
CH
3oalem1.3  |-  R  e. 
CH
3oalem1.4  |-  S  e. 
CH
Assertion
Ref Expression
3oalem1  |-  ( ( ( ( x  e.  B  /\  y  e.  R )  /\  v  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  S )  /\  v  =  ( z  +h  w ) ) )  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  v  e.  ~H )  /\  ( z  e. 
~H  /\  w  e.  ~H ) ) )
Distinct variable groups:    x, y,
z, w, v, B   
x, C, y, z, w, v    x, R, y, z, w, v   
x, S, y, z, w, v

Proof of Theorem 3oalem1
StepHypRef Expression
1 3oalem1.1 . . . . 5  |-  B  e. 
CH
21cheli 26276 . . . 4  |-  ( x  e.  B  ->  x  e.  ~H )
3 3oalem1.3 . . . . 5  |-  R  e. 
CH
43cheli 26276 . . . 4  |-  ( y  e.  R  ->  y  e.  ~H )
52, 4anim12i 566 . . 3  |-  ( ( x  e.  B  /\  y  e.  R )  ->  ( x  e.  ~H  /\  y  e.  ~H )
)
6 hvaddcl 26055 . . . . 5  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  e.  ~H )
7 eleq1 2529 . . . . 5  |-  ( v  =  ( x  +h  y )  ->  (
v  e.  ~H  <->  ( x  +h  y )  e.  ~H ) )
86, 7syl5ibrcom 222 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( v  =  ( x  +h  y )  ->  v  e.  ~H ) )
98imdistani 690 . . 3  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  v  =  (
x  +h  y ) )  ->  ( (
x  e.  ~H  /\  y  e.  ~H )  /\  v  e.  ~H ) )
105, 9sylan 471 . 2  |-  ( ( ( x  e.  B  /\  y  e.  R
)  /\  v  =  ( x  +h  y
) )  ->  (
( x  e.  ~H  /\  y  e.  ~H )  /\  v  e.  ~H ) )
11 3oalem1.2 . . . . 5  |-  C  e. 
CH
1211cheli 26276 . . . 4  |-  ( z  e.  C  ->  z  e.  ~H )
13 3oalem1.4 . . . . 5  |-  S  e. 
CH
1413cheli 26276 . . . 4  |-  ( w  e.  S  ->  w  e.  ~H )
1512, 14anim12i 566 . . 3  |-  ( ( z  e.  C  /\  w  e.  S )  ->  ( z  e.  ~H  /\  w  e.  ~H )
)
1615adantr 465 . 2  |-  ( ( ( z  e.  C  /\  w  e.  S
)  /\  v  =  ( z  +h  w
) )  ->  (
z  e.  ~H  /\  w  e.  ~H )
)
1710, 16anim12i 566 1  |-  ( ( ( ( x  e.  B  /\  y  e.  R )  /\  v  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  S )  /\  v  =  ( z  +h  w ) ) )  ->  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  v  e.  ~H )  /\  ( z  e. 
~H  /\  w  e.  ~H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819  (class class class)co 6296   ~Hchil 25962    +h cva 25963   CHcch 25972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-hilex 26042  ax-hfvadd 26043
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-sh 26250  df-ch 26265
This theorem is referenced by:  3oalem2  26707
  Copyright terms: Public domain W3C validator