Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3noncolr1N Structured version   Unicode version

Theorem 3noncolr1N 35622
Description: Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
3noncol.l  |-  .<_  =  ( le `  K )
3noncol.j  |-  .\/  =  ( join `  K )
3noncol.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3noncolr1N  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  =/=  P  /\  -.  Q  .<_  ( R 
.\/  P ) ) )

Proof of Theorem 3noncolr1N
StepHypRef Expression
1 simp1 994 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 simp22 1028 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  Q  e.  A )
3 simp23 1029 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  R  e.  A )
4 simp21 1027 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
5 3noncol.l . . 3  |-  .<_  =  ( le `  K )
6 3noncol.j . . 3  |-  .\/  =  ( join `  K )
7 3noncol.a . . 3  |-  A  =  ( Atoms `  K )
85, 6, 73noncolr2 35621 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  -> 
( Q  =/=  R  /\  -.  P  .<_  ( Q 
.\/  R ) ) )
95, 6, 73noncolr2 35621 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  ( Q  =/=  R  /\  -.  P  .<_  ( Q  .\/  R
) ) )  -> 
( R  =/=  P  /\  -.  Q  .<_  ( R 
.\/  P ) ) )
101, 2, 3, 4, 8, 9syl131anc 1239 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  =/=  P  /\  -.  Q  .<_  ( R 
.\/  P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    =/= wne 2587   class class class wbr 4380   ` cfv 5509  (class class class)co 6214   lecple 14728   joincjn 15709   Atomscatm 35436   HLchlt 35523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-reu 2749  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-riota 6176  df-ov 6217  df-oprab 6218  df-preset 15693  df-poset 15711  df-plt 15724  df-lub 15740  df-glb 15741  df-join 15742  df-meet 15743  df-p0 15805  df-lat 15812  df-covers 35439  df-ats 35440  df-atl 35471  df-cvlat 35495  df-hlat 35524
This theorem is referenced by:  lplnribN  35723
  Copyright terms: Public domain W3C validator