![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3lcm2e6woprm | Structured version Visualization version Unicode version |
Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 14730, this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3lcm2e6woprm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 10712 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 2cn 10708 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 1, 2 | mulcli 9674 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3z 10999 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 2z 10998 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | lcmcl 14615 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 6 | nn0cnd 10956 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 5, 7 | mp2an 683 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4, 5 | pm3.2i 461 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 2ne0 10730 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
11 | 10 | neii 2637 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
12 | 11 | intnan 930 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | gcdn0cl 14525 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 13 | nncnd 10653 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 9, 12, 14 | mp2an 683 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 9, 12, 13 | mp2an 683 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16 | nnne0i 10672 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | pm3.2i 461 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 3nn 10797 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
20 | 2nn 10796 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
21 | 19, 20 | pm3.2i 461 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | lcmgcdnn 14625 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 22 | eqcomd 2468 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 21, 23 | mp1i 13 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | divmul3 10303 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 24, 25 | mpbird 240 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 26 | eqcomd 2468 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 3, 8, 18, 27 | mp3an 1373 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | gcdcom 14533 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 4, 5, 29 | mp2an 683 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 1z 10996 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
32 | gcdid 14544 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 31, 32 | ax-mp 5 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | abs1 13409 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
35 | 33, 34 | eqtr2i 2485 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | gcdadd 14543 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
37 | 31, 31, 36 | mp2an 683 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 1p1e2 10751 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 38 | oveq2i 6326 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 35, 37, 39 | 3eqtri 2488 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | gcdcom 14533 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
42 | 31, 5, 41 | mp2an 683 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | gcdadd 14543 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
44 | 5, 31, 43 | mp2an 683 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 40, 42, 44 | 3eqtri 2488 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 1p2e3 10763 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
47 | 46 | oveq2i 6326 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | 45, 47 | eqtr2i 2485 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 30, 48 | eqtri 2484 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 49 | oveq2i 6326 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 3t2e6 10790 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
52 | 51 | oveq1i 6325 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 6cn 10719 |
. . . 4
![]() ![]() ![]() ![]() | |
54 | 53 | div1i 10363 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
55 | 52, 54 | eqtri 2484 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 28, 50, 55 | 3eqtri 2488 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-8 1900 ax-9 1907 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-sep 4539 ax-nul 4548 ax-pow 4595 ax-pr 4653 ax-un 6610 ax-cnex 9621 ax-resscn 9622 ax-1cn 9623 ax-icn 9624 ax-addcl 9625 ax-addrcl 9626 ax-mulcl 9627 ax-mulrcl 9628 ax-mulcom 9629 ax-addass 9630 ax-mulass 9631 ax-distr 9632 ax-i2m1 9633 ax-1ne0 9634 ax-1rid 9635 ax-rnegex 9636 ax-rrecex 9637 ax-cnre 9638 ax-pre-lttri 9639 ax-pre-lttrn 9640 ax-pre-ltadd 9641 ax-pre-mulgt0 9642 ax-pre-sup 9643 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1458 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-mo 2315 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-nel 2636 df-ral 2754 df-rex 2755 df-reu 2756 df-rmo 2757 df-rab 2758 df-v 3059 df-sbc 3280 df-csb 3376 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-pss 3432 df-nul 3744 df-if 3894 df-pw 3965 df-sn 3981 df-pr 3983 df-tp 3985 df-op 3987 df-uni 4213 df-iun 4294 df-br 4417 df-opab 4476 df-mpt 4477 df-tr 4512 df-eprel 4764 df-id 4768 df-po 4774 df-so 4775 df-fr 4812 df-we 4814 df-xp 4859 df-rel 4860 df-cnv 4861 df-co 4862 df-dm 4863 df-rn 4864 df-res 4865 df-ima 4866 df-pred 5399 df-ord 5445 df-on 5446 df-lim 5447 df-suc 5448 df-iota 5565 df-fun 5603 df-fn 5604 df-f 5605 df-f1 5606 df-fo 5607 df-f1o 5608 df-fv 5609 df-riota 6277 df-ov 6318 df-oprab 6319 df-mpt2 6320 df-om 6720 df-2nd 6821 df-wrecs 7054 df-recs 7116 df-rdg 7154 df-er 7389 df-en 7596 df-dom 7597 df-sdom 7598 df-sup 7982 df-inf 7983 df-pnf 9703 df-mnf 9704 df-xr 9705 df-ltxr 9706 df-le 9707 df-sub 9888 df-neg 9889 df-div 10298 df-nn 10638 df-2 10696 df-3 10697 df-4 10698 df-5 10699 df-6 10700 df-n0 10899 df-z 10967 df-uz 11189 df-rp 11332 df-fl 12060 df-mod 12129 df-seq 12246 df-exp 12305 df-cj 13211 df-re 13212 df-im 13213 df-sqrt 13347 df-abs 13348 df-dvds 14355 df-gcd 14518 df-lcm 14600 |
This theorem is referenced by: lcmf2a3a4e12 14669 |
Copyright terms: Public domain | W3C validator |