Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaoian Structured version   Unicode version

Theorem 3jaoian 1293
 Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaoian.1
3jaoian.2
3jaoian.3
Assertion
Ref Expression
3jaoian

Proof of Theorem 3jaoian
StepHypRef Expression
1 3jaoian.1 . . . 4
21ex 434 . . 3
3 3jaoian.2 . . . 4
43ex 434 . . 3
5 3jaoian.3 . . . 4
65ex 434 . . 3
72, 4, 63jaoi 1291 . 2
87imp 429 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   w3o 972 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975 This theorem is referenced by:  xrltnsym  11368  xrlttri  11370  xrlttr  11371  qbtwnxr  11424  xltnegi  11440  xaddcom  11462  xnegdi  11465  xaddeq0  27730  3ccased  29314
 Copyright terms: Public domain W3C validator