Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3impexpbicomVD Structured version   Visualization version   Unicode version

Theorem 3impexpbicomVD 37253
Description: Virtual deduction proof of 3impexpbicom 36834. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: 2:: 3:1,2,?: e10 37073 4:3,?: e1a 37006 5:4: 6:: 7:6,?: e1a 37006 8:7,2,?: e10 37073 9:8: qed:5,9,?: e00 37155
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3impexpbicomVD

Proof of Theorem 3impexpbicomVD
StepHypRef Expression
1 idn1 36944 . . . . 5
2 bicom 204 . . . . 5
3 imbi2 326 . . . . . 6
43biimpcd 228 . . . . 5
51, 2, 4e10 37073 . . . 4
6 3impexp 1231 . . . . 5
76biimpi 198 . . . 4
85, 7e1a 37006 . . 3
98in1 36941 . 2
10 idn1 36944 . . . . 5
116biimpri 210 . . . . 5
1210, 11e1a 37006 . . . 4
133biimprcd 229 . . . 4
1412, 2, 13e10 37073 . . 3
1514in1 36941 . 2
16 impbi 190 . 2
179, 15, 16e00 37155 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 188   w3a 985 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 987  df-vd1 36940 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator