Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impexpbicom Structured version   Unicode version

Theorem 3impexpbicom 1416
 Description: 3impexp 1415 with biconditional consequent of antecedent that is commuted in consequent. Derived automatically from 3impexpVD 31426. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Assertion
Ref Expression
3impexpbicom

Proof of Theorem 3impexpbicom
StepHypRef Expression
1 bicom 200 . . . 4
2 imbi2 324 . . . . 5
32biimpcd 224 . . . 4
41, 3mpi 17 . . 3
543expd 1199 . 2
6 3impexp 1415 . . . 4
76biimpri 206 . . 3
87, 1syl6ibr 227 . 2
95, 8impbii 188 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   w3a 960 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 962 This theorem is referenced by:  3impexpbicomiVD  31428
 Copyright terms: Public domain W3C validator