Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3imp31 Structured version   Unicode version

Theorem 3imp31 36364
Description: The importation inference 3imp 1191 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
3imp31.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
3imp31  |-  ( ( ch  /\  ps  /\  ph )  ->  th )

Proof of Theorem 3imp31
StepHypRef Expression
1 3imp31.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com13 80 . 2  |-  ( ch 
->  ( ps  ->  ( ph  ->  th ) ) )
323imp 1191 1  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator