Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3imp21 Structured version   Unicode version

Theorem 3imp21 36572
Description: The importation inference 3imp 1199 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
3imp21.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
3imp21  |-  ( ( ps  /\  ph  /\  ch )  ->  th )

Proof of Theorem 3imp21
StepHypRef Expression
1 3imp21.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
213imp 1199 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
323com12 1209 1  |-  ( ( ps  /\  ph  /\  ch )  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984
This theorem is referenced by:  ax6e2ndeqALT  36968
  Copyright terms: Public domain W3C validator