![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version Unicode version |
Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
Ref | Expression |
---|---|
3exbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3exbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbii.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | exbii 1721 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 2exbii 1722 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1672 ax-4 1685 |
This theorem depends on definitions: df-bi 190 df-ex 1667 |
This theorem is referenced by: 4exdistr 1843 ceqsex6v 3057 oprabid 6302 dfoprab2 6324 dftpos3 6977 xpassen 7652 bnj916 29749 bnj917 29750 bnj983 29767 bnj996 29771 bnj1021 29780 bnj1033 29783 ellines 30924 |
Copyright terms: Public domain | W3C validator |