MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds Unicode version

Theorem 3dvds 12867
Description: A rule for divisibility by 3 of a number written in base 10. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
3dvds  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  <->  3  ||  sum_ k  e.  ( 0 ... N
) ( F `  k ) ) )
Distinct variable groups:    k, F    k, N

Proof of Theorem 3dvds
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 3nn 10090 . . . 4  |-  3  e.  NN
21nnzi 10261 . . 3  |-  3  e.  ZZ
32a1i 11 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  e.  ZZ )
4 fzfid 11267 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 0 ... N )  e.  Fin )
5 ffvelrn 5827 . . . . 5  |-  ( ( F : ( 0 ... N ) --> ZZ 
/\  k  e.  ( 0 ... N ) )  ->  ( F `  k )  e.  ZZ )
65adantll 695 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  ZZ )
7 10nn 10097 . . . . . 6  |-  10  e.  NN
87nnzi 10261 . . . . 5  |-  10  e.  ZZ
9 elfznn0 11039 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
109adantl 453 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
11 zexpcl 11351 . . . . 5  |-  ( ( 10  e.  ZZ  /\  k  e.  NN0 )  -> 
( 10 ^ k
)  e.  ZZ )
128, 10, 11sylancr 645 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( 10 ^ k )  e.  ZZ )
136, 12zmulcld 10337 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( 10
^ k ) )  e.  ZZ )
144, 13fsumzcl 12484 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  ( 10 ^ k ) )  e.  ZZ )
154, 6fsumzcl 12484 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( F `  k
)  e.  ZZ )
1613, 6zsubcld 10336 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  ( 10 ^ k ) )  -  ( F `  k ) )  e.  ZZ )
17 ax-1cn 9004 . . . . . . . . . . . 12  |-  1  e.  CC
187nncni 9966 . . . . . . . . . . . 12  |-  10  e.  CC
1917, 18negsubdi2i 9342 . . . . . . . . . . 11  |-  -u (
1  -  10 )  =  ( 10  - 
1 )
20 df-10 10022 . . . . . . . . . . . 12  |-  10  =  ( 9  +  1 )
2120oveq1i 6050 . . . . . . . . . . 11  |-  ( 10 
-  1 )  =  ( ( 9  +  1 )  -  1 )
22 9nn 10096 . . . . . . . . . . . . 13  |-  9  e.  NN
2322nncni 9966 . . . . . . . . . . . 12  |-  9  e.  CC
24 pncan 9267 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  1  e.  CC )  ->  ( ( 9  +  1 )  -  1 )  =  9 )
2523, 17, 24mp2an 654 . . . . . . . . . . 11  |-  ( ( 9  +  1 )  -  1 )  =  9
2619, 21, 253eqtri 2428 . . . . . . . . . 10  |-  -u (
1  -  10 )  =  9
27 3t3e9 10085 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
2826, 27eqtr4i 2427 . . . . . . . . 9  |-  -u (
1  -  10 )  =  ( 3  x.  3 )
2918a1i 11 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  10  e.  CC )
30 1re 9046 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
31 1lt10 10142 . . . . . . . . . . . . . . . . 17  |-  1  <  10
3230, 31gtneii 9141 . . . . . . . . . . . . . . . 16  |-  10  =/=  1
3332a1i 11 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  10  =/=  1 )
34 id 20 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
3529, 33, 34geoser 12601 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) ( 10 ^
j )  =  ( ( 1  -  ( 10 ^ k ) )  /  ( 1  -  10 ) ) )
36 fzfid 11267 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 0 ... ( k  - 
1 ) )  e. 
Fin )
37 elfznn0 11039 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( k  -  1 ) )  ->  j  e.  NN0 )
3837adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  j  e.  NN0 )
39 zexpcl 11351 . . . . . . . . . . . . . . . 16  |-  ( ( 10  e.  ZZ  /\  j  e.  NN0 )  -> 
( 10 ^ j
)  e.  ZZ )
408, 38, 39sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  ( 10 ^
j )  e.  ZZ )
4136, 40fsumzcl 12484 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) ( 10 ^
j )  e.  ZZ )
4235, 41eqeltrrd 2479 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  ( 10
^ k ) )  /  ( 1  -  10 ) )  e.  ZZ )
43 1z 10267 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
44 zsubcl 10275 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  ZZ  /\  10  e.  ZZ )  -> 
( 1  -  10 )  e.  ZZ )
4543, 8, 44mp2an 654 . . . . . . . . . . . . . . 15  |-  ( 1  -  10 )  e.  ZZ
4645a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  10 )  e.  ZZ )
4730, 31ltneii 9142 . . . . . . . . . . . . . . . 16  |-  1  =/=  10
4817, 18subeq0i 9336 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  -  10 )  =  0  <->  1  =  10 )
4948necon3bii 2599 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  10 )  =/=  0  <->  1  =/=  10 )
5047, 49mpbir 201 . . . . . . . . . . . . . . 15  |-  ( 1  -  10 )  =/=  0
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  10 )  =/=  0 )
528, 34, 11sylancr 645 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 10
^ k )  e.  ZZ )
53 zsubcl 10275 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  ( 10 ^ k )  e.  ZZ )  -> 
( 1  -  ( 10 ^ k ) )  e.  ZZ )
5443, 52, 53sylancr 645 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  ( 10 ^
k ) )  e.  ZZ )
55 dvdsval2 12810 . . . . . . . . . . . . . 14  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
1  -  10 )  =/=  0  /\  (
1  -  ( 10
^ k ) )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
1  -  ( 10
^ k ) )  <-> 
( ( 1  -  ( 10 ^ k
) )  /  (
1  -  10 ) )  e.  ZZ ) )
5646, 51, 54, 55syl3anc 1184 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( 1  -  ( 10 ^ k
) )  <->  ( (
1  -  ( 10
^ k ) )  /  ( 1  -  10 ) )  e.  ZZ ) )
5742, 56mpbird 224 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  ( 1  -  ( 10 ^ k ) ) )
5852zcnd 10332 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 10
^ k )  e.  CC )
59 negsubdi2 9316 . . . . . . . . . . . . 13  |-  ( ( ( 10 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 10
^ k )  - 
1 )  =  ( 1  -  ( 10
^ k ) ) )
6058, 17, 59sylancl 644 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  -u (
( 10 ^ k
)  -  1 )  =  ( 1  -  ( 10 ^ k
) ) )
6157, 60breqtrrd 4198 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  -u ( ( 10 ^
k )  -  1 ) )
62 peano2zm 10276 . . . . . . . . . . . . 13  |-  ( ( 10 ^ k )  e.  ZZ  ->  (
( 10 ^ k
)  -  1 )  e.  ZZ )
6352, 62syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( 10 ^ k )  -  1 )  e.  ZZ )
64 dvdsnegb 12822 . . . . . . . . . . . 12  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
( 10 ^ k
)  -  1 )  <-> 
( 1  -  10 )  ||  -u ( ( 10
^ k )  - 
1 ) ) )
6545, 63, 64sylancr 645 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( ( 10
^ k )  - 
1 )  <->  ( 1  -  10 )  ||  -u ( ( 10 ^
k )  -  1 ) ) )
6661, 65mpbird 224 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  ( ( 10 ^
k )  -  1 ) )
67 negdvdsb 12821 . . . . . . . . . . 11  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
( 10 ^ k
)  -  1 )  <->  -u ( 1  -  10 )  ||  ( ( 10
^ k )  - 
1 ) ) )
6845, 63, 67sylancr 645 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( ( 10
^ k )  - 
1 )  <->  -u ( 1  -  10 )  ||  ( ( 10 ^
k )  -  1 ) ) )
6966, 68mpbid 202 . . . . . . . . 9  |-  ( k  e.  NN0  ->  -u (
1  -  10 ) 
||  ( ( 10
^ k )  - 
1 ) )
7028, 69syl5eqbrr 4206 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 3  x.  3 )  ||  ( ( 10 ^
k )  -  1 ) )
712a1i 11 . . . . . . . . 9  |-  ( k  e.  NN0  ->  3  e.  ZZ )
72 muldvds1 12829 . . . . . . . . 9  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 3  x.  3 )  ||  (
( 10 ^ k
)  -  1 )  ->  3  ||  (
( 10 ^ k
)  -  1 ) ) )
7371, 71, 63, 72syl3anc 1184 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3  x.  3 ) 
||  ( ( 10
^ k )  - 
1 )  ->  3  ||  ( ( 10 ^
k )  -  1 ) ) )
7470, 73mpd 15 . . . . . . 7  |-  ( k  e.  NN0  ->  3  ||  ( ( 10 ^
k )  -  1 ) )
7510, 74syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( 10 ^
k )  -  1 ) )
762a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  e.  ZZ )
7712, 62syl 16 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( 10 ^ k
)  -  1 )  e.  ZZ )
78 dvdsmultr2 12840 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  ( F `  k )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( 3  ||  (
( 10 ^ k
)  -  1 )  ->  3  ||  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) ) ) )
7976, 6, 77, 78syl3anc 1184 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
3  ||  ( ( 10 ^ k )  - 
1 )  ->  3  ||  ( ( F `  k )  x.  (
( 10 ^ k
)  -  1 ) ) ) )
8075, 79mpd 15 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( F `  k )  x.  (
( 10 ^ k
)  -  1 ) ) )
816zcnd 10332 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  CC )
8212zcnd 10332 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( 10 ^ k )  e.  CC )
8317a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  1  e.  CC )
8481, 82, 83subdid 9445 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( ( F `  k )  x.  1 ) ) )
8581mulid1d 9061 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  1 )  =  ( F `  k ) )
8685oveq2d 6056 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  ( 10 ^ k ) )  -  ( ( F `
 k )  x.  1 ) )  =  ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
) )
8784, 86eqtrd 2436 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( F `  k ) ) )
8880, 87breqtrd 4196 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
) )
894, 3, 16, 88fsumdvds 12848 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  sum_ k  e.  ( 0 ... N
) ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( F `  k ) ) )
9013zcnd 10332 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( 10
^ k ) )  e.  CC )
914, 90, 81fsumsub 12526 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k
) ) )
9289, 91breqtrd 4196 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k
) ) )
93 dvdssub2 12842 . 2  |-  ( ( ( 3  e.  ZZ  /\ 
sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  ( 10 ^ k ) )  e.  ZZ  /\  sum_ k  e.  ( 0 ... N ) ( F `  k )  e.  ZZ )  /\  3  ||  ( sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  ( 10 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )  ->  (
3  ||  sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  ( 10 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
943, 14, 15, 92, 93syl31anc 1187 1  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  <->  3  ||  sum_ k  e.  ( 0 ... N
) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   3c3 10006   9c9 10012   10c10 10013   NN0cn0 10177   ZZcz 10238   ...cfz 10999   ^cexp 11337   sum_csu 12434    || cdivides 12807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-dvds 12808
  Copyright terms: Public domain W3C validator