MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds Structured version   Unicode version

Theorem 3dvds 13588
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
3dvds  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  <->  3  ||  sum_ k  e.  ( 0 ... N
) ( F `  k ) ) )
Distinct variable groups:    k, F    k, N

Proof of Theorem 3dvds
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 3z 10671 . . 3  |-  3  e.  ZZ
21a1i 11 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  e.  ZZ )
3 fzfid 11787 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 0 ... N )  e.  Fin )
4 ffvelrn 5836 . . . . 5  |-  ( ( F : ( 0 ... N ) --> ZZ 
/\  k  e.  ( 0 ... N ) )  ->  ( F `  k )  e.  ZZ )
54adantll 713 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  ZZ )
6 10nn 10479 . . . . . 6  |-  10  e.  NN
76nnzi 10662 . . . . 5  |-  10  e.  ZZ
8 elfznn0 11473 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
98adantl 466 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
10 zexpcl 11872 . . . . 5  |-  ( ( 10  e.  ZZ  /\  k  e.  NN0 )  -> 
( 10 ^ k
)  e.  ZZ )
117, 9, 10sylancr 663 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( 10 ^ k )  e.  ZZ )
125, 11zmulcld 10745 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( 10
^ k ) )  e.  ZZ )
133, 12fsumzcl 13204 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  ( 10 ^ k ) )  e.  ZZ )
143, 5fsumzcl 13204 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( F `  k
)  e.  ZZ )
1512, 5zsubcld 10744 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  ( 10 ^ k ) )  -  ( F `  k ) )  e.  ZZ )
16 ax-1cn 9332 . . . . . . . . . . . 12  |-  1  e.  CC
176nncni 10324 . . . . . . . . . . . 12  |-  10  e.  CC
1816, 17negsubdi2i 9686 . . . . . . . . . . 11  |-  -u (
1  -  10 )  =  ( 10  - 
1 )
19 df-10 10380 . . . . . . . . . . . 12  |-  10  =  ( 9  +  1 )
2019oveq1i 6096 . . . . . . . . . . 11  |-  ( 10 
-  1 )  =  ( ( 9  +  1 )  -  1 )
21 9cn 10401 . . . . . . . . . . . 12  |-  9  e.  CC
22 pncan 9608 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  1  e.  CC )  ->  ( ( 9  +  1 )  -  1 )  =  9 )
2321, 16, 22mp2an 672 . . . . . . . . . . 11  |-  ( ( 9  +  1 )  -  1 )  =  9
2418, 20, 233eqtri 2462 . . . . . . . . . 10  |-  -u (
1  -  10 )  =  9
25 3t3e9 10466 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
2624, 25eqtr4i 2461 . . . . . . . . 9  |-  -u (
1  -  10 )  =  ( 3  x.  3 )
2717a1i 11 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  10  e.  CC )
28 1re 9377 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
29 1lt10 10524 . . . . . . . . . . . . . . . . 17  |-  1  <  10
3028, 29gtneii 9478 . . . . . . . . . . . . . . . 16  |-  10  =/=  1
3130a1i 11 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  10  =/=  1 )
32 id 22 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
3327, 31, 32geoser 13321 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) ( 10 ^
j )  =  ( ( 1  -  ( 10 ^ k ) )  /  ( 1  -  10 ) ) )
34 fzfid 11787 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 0 ... ( k  - 
1 ) )  e. 
Fin )
35 elfznn0 11473 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( k  -  1 ) )  ->  j  e.  NN0 )
3635adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  j  e.  NN0 )
37 zexpcl 11872 . . . . . . . . . . . . . . . 16  |-  ( ( 10  e.  ZZ  /\  j  e.  NN0 )  -> 
( 10 ^ j
)  e.  ZZ )
387, 36, 37sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  ( 10 ^
j )  e.  ZZ )
3934, 38fsumzcl 13204 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) ( 10 ^
j )  e.  ZZ )
4033, 39eqeltrrd 2513 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  ( 10
^ k ) )  /  ( 1  -  10 ) )  e.  ZZ )
41 1z 10668 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
42 zsubcl 10679 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  ZZ  /\  10  e.  ZZ )  -> 
( 1  -  10 )  e.  ZZ )
4341, 7, 42mp2an 672 . . . . . . . . . . . . . . 15  |-  ( 1  -  10 )  e.  ZZ
4443a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  10 )  e.  ZZ )
4528, 29ltneii 9479 . . . . . . . . . . . . . . . 16  |-  1  =/=  10
4616, 17subeq0i 9680 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  -  10 )  =  0  <->  1  =  10 )
4746necon3bii 2635 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  10 )  =/=  0  <->  1  =/=  10 )
4845, 47mpbir 209 . . . . . . . . . . . . . . 15  |-  ( 1  -  10 )  =/=  0
4948a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  10 )  =/=  0 )
507, 32, 10sylancr 663 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 10
^ k )  e.  ZZ )
51 zsubcl 10679 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  ( 10 ^ k )  e.  ZZ )  -> 
( 1  -  ( 10 ^ k ) )  e.  ZZ )
5241, 50, 51sylancr 663 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  ( 10 ^
k ) )  e.  ZZ )
53 dvdsval2 13530 . . . . . . . . . . . . . 14  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
1  -  10 )  =/=  0  /\  (
1  -  ( 10
^ k ) )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
1  -  ( 10
^ k ) )  <-> 
( ( 1  -  ( 10 ^ k
) )  /  (
1  -  10 ) )  e.  ZZ ) )
5444, 49, 52, 53syl3anc 1218 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( 1  -  ( 10 ^ k
) )  <->  ( (
1  -  ( 10
^ k ) )  /  ( 1  -  10 ) )  e.  ZZ ) )
5540, 54mpbird 232 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  ( 1  -  ( 10 ^ k ) ) )
5650zcnd 10740 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 10
^ k )  e.  CC )
57 negsubdi2 9660 . . . . . . . . . . . . 13  |-  ( ( ( 10 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 10
^ k )  - 
1 )  =  ( 1  -  ( 10
^ k ) ) )
5856, 16, 57sylancl 662 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  -u (
( 10 ^ k
)  -  1 )  =  ( 1  -  ( 10 ^ k
) ) )
5955, 58breqtrrd 4313 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  -u ( ( 10 ^
k )  -  1 ) )
60 peano2zm 10680 . . . . . . . . . . . . 13  |-  ( ( 10 ^ k )  e.  ZZ  ->  (
( 10 ^ k
)  -  1 )  e.  ZZ )
6150, 60syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( 10 ^ k )  -  1 )  e.  ZZ )
62 dvdsnegb 13542 . . . . . . . . . . . 12  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
( 10 ^ k
)  -  1 )  <-> 
( 1  -  10 )  ||  -u ( ( 10
^ k )  - 
1 ) ) )
6343, 61, 62sylancr 663 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( ( 10
^ k )  - 
1 )  <->  ( 1  -  10 )  ||  -u ( ( 10 ^
k )  -  1 ) ) )
6459, 63mpbird 232 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  ( ( 10 ^
k )  -  1 ) )
65 negdvdsb 13541 . . . . . . . . . . 11  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
( 10 ^ k
)  -  1 )  <->  -u ( 1  -  10 )  ||  ( ( 10
^ k )  - 
1 ) ) )
6643, 61, 65sylancr 663 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( ( 10
^ k )  - 
1 )  <->  -u ( 1  -  10 )  ||  ( ( 10 ^
k )  -  1 ) ) )
6764, 66mpbid 210 . . . . . . . . 9  |-  ( k  e.  NN0  ->  -u (
1  -  10 ) 
||  ( ( 10
^ k )  - 
1 ) )
6826, 67syl5eqbrr 4321 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 3  x.  3 )  ||  ( ( 10 ^
k )  -  1 ) )
691a1i 11 . . . . . . . . 9  |-  ( k  e.  NN0  ->  3  e.  ZZ )
70 muldvds1 13549 . . . . . . . . 9  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 3  x.  3 )  ||  (
( 10 ^ k
)  -  1 )  ->  3  ||  (
( 10 ^ k
)  -  1 ) ) )
7169, 69, 61, 70syl3anc 1218 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3  x.  3 ) 
||  ( ( 10
^ k )  - 
1 )  ->  3  ||  ( ( 10 ^
k )  -  1 ) ) )
7268, 71mpd 15 . . . . . . 7  |-  ( k  e.  NN0  ->  3  ||  ( ( 10 ^
k )  -  1 ) )
739, 72syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( 10 ^
k )  -  1 ) )
741a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  e.  ZZ )
7511, 60syl 16 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( 10 ^ k
)  -  1 )  e.  ZZ )
76 dvdsmultr2 13560 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  ( F `  k )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( 3  ||  (
( 10 ^ k
)  -  1 )  ->  3  ||  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) ) ) )
7774, 5, 75, 76syl3anc 1218 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
3  ||  ( ( 10 ^ k )  - 
1 )  ->  3  ||  ( ( F `  k )  x.  (
( 10 ^ k
)  -  1 ) ) ) )
7873, 77mpd 15 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( F `  k )  x.  (
( 10 ^ k
)  -  1 ) ) )
795zcnd 10740 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  CC )
8011zcnd 10740 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( 10 ^ k )  e.  CC )
8116a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  1  e.  CC )
8279, 80, 81subdid 9792 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( ( F `  k )  x.  1 ) ) )
8379mulid1d 9395 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  1 )  =  ( F `  k ) )
8483oveq2d 6102 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  ( 10 ^ k ) )  -  ( ( F `
 k )  x.  1 ) )  =  ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
) )
8582, 84eqtrd 2470 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( F `  k ) ) )
8678, 85breqtrd 4311 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
) )
873, 2, 15, 86fsumdvds 13568 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  sum_ k  e.  ( 0 ... N
) ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( F `  k ) ) )
8812zcnd 10740 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( 10
^ k ) )  e.  CC )
893, 88, 79fsumsub 13247 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k
) ) )
9087, 89breqtrd 4311 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k
) ) )
91 dvdssub2 13562 . 2  |-  ( ( ( 3  e.  ZZ  /\ 
sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  ( 10 ^ k ) )  e.  ZZ  /\  sum_ k  e.  ( 0 ... N ) ( F `  k )  e.  ZZ )  /\  3  ||  ( sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  ( 10 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )  ->  (
3  ||  sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  ( 10 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
922, 13, 14, 90, 91syl31anc 1221 1  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  <->  3  ||  sum_ k  e.  ( 0 ... N
) ( F `  k ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    - cmin 9587   -ucneg 9588    / cdiv 9985   3c3 10364   9c9 10370   10c10 10371   NN0cn0 10571   ZZcz 10638   ...cfz 11429   ^cexp 11857   sum_csu 13155    || cdivides 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-dvds 13528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator