Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem4 Structured version   Unicode version

Theorem 3dimlem4 35601
Description: Lemma for 3dim1 35604. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dimlem4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )

Proof of Theorem 3dimlem4
StepHypRef Expression
1 simp2l 1020 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  P  =/=  Q )
2 simp2r 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  P  .<_  ( Q  .\/  R ) )
3 simp11 1024 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  K  e.  HL )
4 simp2l 1020 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  R  e.  A )
5 simp12 1025 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  P  e.  A )
6 simp13 1026 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  e.  A )
7 simp3l 1022 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  =/=  R )
87necomd 2653 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  R  =/=  Q )
9 3dim0.l . . . . . . 7  |-  .<_  =  ( le `  K )
10 3dim0.j . . . . . . 7  |-  .\/  =  ( join `  K )
11 3dim0.a . . . . . . 7  |-  A  =  ( Atoms `  K )
129, 10, 11hlatexch2 35533 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  R  =/=  Q )  ->  ( R  .<_  ( P  .\/  Q
)  ->  P  .<_  ( R  .\/  Q ) ) )
133, 4, 5, 6, 8, 12syl131anc 1239 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( R  .<_  ( P 
.\/  Q )  ->  P  .<_  ( R  .\/  Q ) ) )
1410, 11hlatjcom 35505 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  =  ( R 
.\/  Q ) )
153, 6, 4, 14syl3anc 1226 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( Q  .\/  R
)  =  ( R 
.\/  Q ) )
1615breq2d 4379 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( P  .<_  ( Q 
.\/  R )  <->  P  .<_  ( R  .\/  Q ) ) )
1713, 16sylibrd 234 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( R  .<_  ( P 
.\/  Q )  ->  P  .<_  ( Q  .\/  R ) ) )
18173ad2ant1 1015 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( R  .<_  ( P  .\/  Q )  ->  P  .<_  ( Q  .\/  R ) ) )
192, 18mtod 177 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  R  .<_  ( P  .\/  Q ) )
20 simp11 1024 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
21 simp12 1025 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( R  e.  A  /\  S  e.  A )
)
22 simp13r 1110 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  S  .<_  ( Q  .\/  R ) )
23 simp3 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )
2410, 9, 113dimlem4a 35600 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) )
2520, 21, 22, 2, 23, 24syl113anc 1238 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) )
261, 19, 253jca 1174 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   lecple 14709   joincjn 15690   Atomscatm 35401   HLchlt 35488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-lat 15793  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489
This theorem is referenced by:  3dim1  35604  3dim2  35605
  Copyright terms: Public domain W3C validator