Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem2 Structured version   Unicode version

Theorem 3dimlem2 33426
Description: Lemma for 3dim1 33434. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dimlem2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( ( P  .\/  Q )  .\/  S ) ) )

Proof of Theorem 3dimlem2
StepHypRef Expression
1 simp3l 1016 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  P  =/=  Q )
2 simp22 1022 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  -.  S  .<_  ( Q  .\/  R ) )
3 3dim0.j . . . . . . 7  |-  .\/  =  ( join `  K )
4 3dim0.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4hlatjcom 33335 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
653ad2ant1 1009 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
7 simp3r 1017 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  P  .<_  ( Q  .\/  R
) )
8 simp11 1018 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  K  e.  HL )
9 simp12 1019 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  P  e.  A )
10 simp21 1021 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  R  e.  A )
11 simp13 1020 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  Q  e.  A )
12 3dim0.l . . . . . . . 8  |-  .<_  =  ( le `  K )
1312, 3, 4hlatexchb1 33360 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  R  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  ( P  .<_  ( Q  .\/  R
)  <->  ( Q  .\/  P )  =  ( Q 
.\/  R ) ) )
148, 9, 10, 11, 1, 13syl131anc 1232 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( P  .<_  ( Q  .\/  R )  <->  ( Q  .\/  P )  =  ( Q 
.\/  R ) ) )
157, 14mpbid 210 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( Q  .\/  P )  =  ( Q  .\/  R
) )
166, 15eqtrd 2495 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( P  .\/  Q )  =  ( Q  .\/  R
) )
1716breq2d 4411 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( S  .<_  ( P  .\/  Q )  <->  S  .<_  ( Q 
.\/  R ) ) )
182, 17mtbird 301 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
19 simp23 1023 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  -.  T  .<_  ( ( Q 
.\/  R )  .\/  S ) )
2016oveq1d 6214 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  (
( P  .\/  Q
)  .\/  S )  =  ( ( Q 
.\/  R )  .\/  S ) )
2120breq2d 4411 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( T  .<_  ( ( P 
.\/  Q )  .\/  S )  <->  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )
2219, 21mtbird 301 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  -.  T  .<_  ( ( P 
.\/  Q )  .\/  S ) )
231, 18, 223jca 1168 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  R ) ) )  ->  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( ( P  .\/  Q )  .\/  S ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   class class class wbr 4399   ` cfv 5525  (class class class)co 6199   lecple 14363   joincjn 15232   Atomscatm 33231   HLchlt 33318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-poset 15234  df-plt 15246  df-lub 15262  df-glb 15263  df-join 15264  df-meet 15265  df-p0 15327  df-lat 15334  df-covers 33234  df-ats 33235  df-atl 33266  df-cvlat 33290  df-hlat 33319
This theorem is referenced by:  3dim1  33434  3dim2  33435
  Copyright terms: Public domain W3C validator