Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim2 Structured version   Unicode version

Theorem 3dim2 34264
Description: Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dim2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
Distinct variable groups:    s, r, A    .\/ , r, s    .<_ , r, s    P, r, s    Q, r, s
Allowed substitution hints:    K( s, r)

Proof of Theorem 3dim2
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4  |-  .\/  =  ( join `  K )
2 3dim0.l . . . 4  |-  .<_  =  ( le `  K )
3 3dim0.a . . . 4  |-  A  =  ( Atoms `  K )
41, 2, 33dim1 34263 . . 3  |-  ( ( K  e.  HL  /\  Q  e.  A )  ->  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )
543adant2 1015 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )
6 simpl21 1074 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  u  e.  A )
7 simpl22 1075 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  v  e.  A )
8 simp31 1032 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  Q  =/=  u )
98necomd 2738 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  u  =/=  Q )
109adantr 465 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  u  =/=  Q )
11 oveq1 6289 . . . . . . . . . . . . . 14  |-  ( P  =  Q  ->  ( P  .\/  Q )  =  ( Q  .\/  Q
) )
12 simp11 1026 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  K  e.  HL )
13 simp13 1028 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  Q  e.  A )
141, 3hlatjidm 34165 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  Q  e.  A )  ->  ( Q  .\/  Q
)  =  Q )
1512, 13, 14syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( Q  .\/  Q
)  =  Q )
1611, 15sylan9eqr 2530 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  ( P  .\/  Q )  =  Q )
1716breq2d 4459 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  (
u  .<_  ( P  .\/  Q )  <->  u  .<_  Q ) )
1817notbid 294 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  ( -.  u  .<_  ( P 
.\/  Q )  <->  -.  u  .<_  Q ) )
19 hlatl 34157 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  AtLat )
2012, 19syl 16 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  K  e.  AtLat )
21 simp21 1029 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  u  e.  A )
222, 3atncmp 34109 . . . . . . . . . . . . 13  |-  ( ( K  e.  AtLat  /\  u  e.  A  /\  Q  e.  A )  ->  ( -.  u  .<_  Q  <->  u  =/=  Q ) )
2320, 21, 13, 22syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( -.  u  .<_  Q  <-> 
u  =/=  Q ) )
2423adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  ( -.  u  .<_  Q  <->  u  =/=  Q ) )
2518, 24bitrd 253 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  ( -.  u  .<_  ( P 
.\/  Q )  <->  u  =/=  Q ) )
2610, 25mpbird 232 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  -.  u  .<_  ( P  .\/  Q ) )
27 simpl32 1078 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  -.  v  .<_  ( Q  .\/  u ) )
2816oveq1d 6297 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  (
( P  .\/  Q
)  .\/  u )  =  ( Q  .\/  u ) )
2928breq2d 4459 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  (
v  .<_  ( ( P 
.\/  Q )  .\/  u )  <->  v  .<_  ( Q  .\/  u ) ) )
3027, 29mtbird 301 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  -.  v  .<_  ( ( P 
.\/  Q )  .\/  u ) )
31 breq1 4450 . . . . . . . . . . . 12  |-  ( r  =  u  ->  (
r  .<_  ( P  .\/  Q )  <->  u  .<_  ( P 
.\/  Q ) ) )
3231notbid 294 . . . . . . . . . . 11  |-  ( r  =  u  ->  ( -.  r  .<_  ( P 
.\/  Q )  <->  -.  u  .<_  ( P  .\/  Q
) ) )
33 oveq2 6290 . . . . . . . . . . . . 13  |-  ( r  =  u  ->  (
( P  .\/  Q
)  .\/  r )  =  ( ( P 
.\/  Q )  .\/  u ) )
3433breq2d 4459 . . . . . . . . . . . 12  |-  ( r  =  u  ->  (
s  .<_  ( ( P 
.\/  Q )  .\/  r )  <->  s  .<_  ( ( P  .\/  Q
)  .\/  u )
) )
3534notbid 294 . . . . . . . . . . 11  |-  ( r  =  u  ->  ( -.  s  .<_  ( ( P  .\/  Q ) 
.\/  r )  <->  -.  s  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
3632, 35anbi12d 710 . . . . . . . . . 10  |-  ( r  =  u  ->  (
( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) )  <->  ( -.  u  .<_  ( P  .\/  Q
)  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  u ) ) ) )
37 breq1 4450 . . . . . . . . . . . 12  |-  ( s  =  v  ->  (
s  .<_  ( ( P 
.\/  Q )  .\/  u )  <->  v  .<_  ( ( P  .\/  Q
)  .\/  u )
) )
3837notbid 294 . . . . . . . . . . 11  |-  ( s  =  v  ->  ( -.  s  .<_  ( ( P  .\/  Q ) 
.\/  u )  <->  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
3938anbi2d 703 . . . . . . . . . 10  |-  ( s  =  v  ->  (
( -.  u  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  u ) )  <->  ( -.  u  .<_  ( P  .\/  Q
)  /\  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) ) )
4036, 39rspc2ev 3225 . . . . . . . . 9  |-  ( ( u  e.  A  /\  v  e.  A  /\  ( -.  u  .<_  ( P  .\/  Q )  /\  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
416, 7, 26, 30, 40syl112anc 1232 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =  Q )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
42 simp22 1030 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
v  e.  A )
43 simp23 1031 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  w  e.  A )
4442, 43jca 532 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( v  e.  A  /\  w  e.  A
) )
4544ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  (
v  e.  A  /\  w  e.  A )
)
46 simpll1 1035 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
47 simp32 1033 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  -.  v  .<_  ( Q 
.\/  u ) )
48 simp33 1034 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) )
4921, 47, 483jca 1176 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( u  e.  A  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )
5049ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  (
u  e.  A  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )
51 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  P  =/=  Q )
52 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  P  .<_  ( Q  .\/  u
) )
531, 2, 33dimlem2 34255 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  /\  ( P  =/= 
Q  /\  P  .<_  ( Q  .\/  u ) ) )  ->  ( P  =/=  Q  /\  -.  v  .<_  ( P  .\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  v ) ) )
5446, 50, 51, 52, 53syl112anc 1232 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  ( P  =/=  Q  /\  -.  v  .<_  ( P  .\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  v ) ) )
55 3simpc 995 . . . . . . . . . . 11  |-  ( ( P  =/=  Q  /\  -.  v  .<_  ( P 
.\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q ) 
.\/  v ) )  ->  ( -.  v  .<_  ( P  .\/  Q
)  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  v ) ) )
5654, 55syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  ( -.  v  .<_  ( P 
.\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q ) 
.\/  v ) ) )
57 breq1 4450 . . . . . . . . . . . . . 14  |-  ( r  =  v  ->  (
r  .<_  ( P  .\/  Q )  <->  v  .<_  ( P 
.\/  Q ) ) )
5857notbid 294 . . . . . . . . . . . . 13  |-  ( r  =  v  ->  ( -.  r  .<_  ( P 
.\/  Q )  <->  -.  v  .<_  ( P  .\/  Q
) ) )
59 oveq2 6290 . . . . . . . . . . . . . . 15  |-  ( r  =  v  ->  (
( P  .\/  Q
)  .\/  r )  =  ( ( P 
.\/  Q )  .\/  v ) )
6059breq2d 4459 . . . . . . . . . . . . . 14  |-  ( r  =  v  ->  (
s  .<_  ( ( P 
.\/  Q )  .\/  r )  <->  s  .<_  ( ( P  .\/  Q
)  .\/  v )
) )
6160notbid 294 . . . . . . . . . . . . 13  |-  ( r  =  v  ->  ( -.  s  .<_  ( ( P  .\/  Q ) 
.\/  r )  <->  -.  s  .<_  ( ( P  .\/  Q )  .\/  v ) ) )
6258, 61anbi12d 710 . . . . . . . . . . . 12  |-  ( r  =  v  ->  (
( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) )  <->  ( -.  v  .<_  ( P  .\/  Q
)  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  v ) ) ) )
63 breq1 4450 . . . . . . . . . . . . . 14  |-  ( s  =  w  ->  (
s  .<_  ( ( P 
.\/  Q )  .\/  v )  <->  w  .<_  ( ( P  .\/  Q
)  .\/  v )
) )
6463notbid 294 . . . . . . . . . . . . 13  |-  ( s  =  w  ->  ( -.  s  .<_  ( ( P  .\/  Q ) 
.\/  v )  <->  -.  w  .<_  ( ( P  .\/  Q )  .\/  v ) ) )
6564anbi2d 703 . . . . . . . . . . . 12  |-  ( s  =  w  ->  (
( -.  v  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  v ) )  <->  ( -.  v  .<_  ( P  .\/  Q
)  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  v ) ) ) )
6662, 65rspc2ev 3225 . . . . . . . . . . 11  |-  ( ( v  e.  A  /\  w  e.  A  /\  ( -.  v  .<_  ( P  .\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q
)  .\/  v )
) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
67663expa 1196 . . . . . . . . . 10  |-  ( ( ( v  e.  A  /\  w  e.  A
)  /\  ( -.  v  .<_  ( P  .\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  v ) ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
6845, 56, 67syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  P  .<_  ( Q  .\/  u
) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
6921, 43jca 532 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( u  e.  A  /\  w  e.  A
) )
7069ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  ( u  e.  A  /\  w  e.  A ) )
71 simp1 996 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )
)
7221, 42jca 532 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( u  e.  A  /\  v  e.  A
) )
738, 48jca 532 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( Q  =/=  u  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )
7471, 72, 733jca 1176 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( Q  =/=  u  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) ) )
7574ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( Q  =/=  u  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) ) )
76 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  P  =/=  Q
)
77 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  -.  P  .<_  ( Q  .\/  u ) )
78 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )
791, 2, 33dimlem3 34257 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( Q  =/=  u  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  u )  /\  P  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( P  =/=  Q  /\  -.  u  .<_  ( P 
.\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q ) 
.\/  u ) ) )
8075, 76, 77, 78, 79syl13anc 1230 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  ( P  =/= 
Q  /\  -.  u  .<_  ( P  .\/  Q
)  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
81 3simpc 995 . . . . . . . . . . . 12  |-  ( ( P  =/=  Q  /\  -.  u  .<_  ( P 
.\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q ) 
.\/  u ) )  ->  ( -.  u  .<_  ( P  .\/  Q
)  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
8280, 81syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  ( -.  u  .<_  ( P  .\/  Q
)  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
83 breq1 4450 . . . . . . . . . . . . . . 15  |-  ( s  =  w  ->  (
s  .<_  ( ( P 
.\/  Q )  .\/  u )  <->  w  .<_  ( ( P  .\/  Q
)  .\/  u )
) )
8483notbid 294 . . . . . . . . . . . . . 14  |-  ( s  =  w  ->  ( -.  s  .<_  ( ( P  .\/  Q ) 
.\/  u )  <->  -.  w  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
8584anbi2d 703 . . . . . . . . . . . . 13  |-  ( s  =  w  ->  (
( -.  u  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  u ) )  <->  ( -.  u  .<_  ( P  .\/  Q
)  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  u ) ) ) )
8636, 85rspc2ev 3225 . . . . . . . . . . . 12  |-  ( ( u  e.  A  /\  w  e.  A  /\  ( -.  u  .<_  ( P  .\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q
)  .\/  u )
) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
87863expa 1196 . . . . . . . . . . 11  |-  ( ( ( u  e.  A  /\  w  e.  A
)  /\  ( -.  u  .<_  ( P  .\/  Q )  /\  -.  w  .<_  ( ( P  .\/  Q )  .\/  u ) ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
8870, 82, 87syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
8972ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  ( u  e.  A  /\  v  e.  A ) )
908, 47jca 532 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u ) ) )
9171, 72, 903jca 1176 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  -> 
( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u ) ) ) )
9291ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u ) ) ) )
93 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  P  =/=  Q )
94 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  -.  P  .<_  ( Q  .\/  u
) )
95 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  -.  P  .<_  ( ( Q  .\/  u )  .\/  v
) )
961, 2, 33dimlem4 34260 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  ( P  =/= 
Q  /\  -.  u  .<_  ( P  .\/  Q
)  /\  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
9792, 93, 94, 95, 96syl121anc 1233 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  ( P  =/=  Q  /\  -.  u  .<_  ( P  .\/  Q
)  /\  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
98 3simpc 995 . . . . . . . . . . . 12  |-  ( ( P  =/=  Q  /\  -.  u  .<_  ( P 
.\/  Q )  /\  -.  v  .<_  ( ( P  .\/  Q ) 
.\/  u ) )  ->  ( -.  u  .<_  ( P  .\/  Q
)  /\  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
9997, 98syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  ( -.  u  .<_  ( P  .\/  Q )  /\  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) )
100403expa 1196 . . . . . . . . . . 11  |-  ( ( ( u  e.  A  /\  v  e.  A
)  /\  ( -.  u  .<_  ( P  .\/  Q )  /\  -.  v  .<_  ( ( P  .\/  Q )  .\/  u ) ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
10189, 99, 100syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  /\  P  =/=  Q )  /\  -.  P  .<_  ( Q 
.\/  u ) )  /\  -.  P  .<_  ( ( Q  .\/  u
)  .\/  v )
)  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
10288, 101pm2.61dan 789 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  /\  -.  P  .<_  ( Q  .\/  u ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
10368, 102pm2.61dan 789 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) ) )  /\  P  =/= 
Q )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
10441, 103pm2.61dane 2785 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
1051043exp 1195 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( ( u  e.  A  /\  v  e.  A  /\  w  e.  A )  ->  (
( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) ) ) )
1061053expd 1213 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( u  e.  A  ->  ( v  e.  A  ->  ( w  e.  A  ->  ( ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) ) ) ) ) )
107106imp32 433 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A
) )  ->  (
w  e.  A  -> 
( ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) ) ) )
108107rexlimdv 2953 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( u  e.  A  /\  v  e.  A
) )  ->  ( E. w  e.  A  ( Q  =/=  u  /\  -.  v  .<_  ( Q 
.\/  u )  /\  -.  w  .<_  ( ( Q  .\/  u ) 
.\/  v ) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) ) )
109108rexlimdvva 2962 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( E. u  e.  A  E. v  e.  A  E. w  e.  A  ( Q  =/=  u  /\  -.  v  .<_  ( Q  .\/  u
)  /\  -.  w  .<_  ( ( Q  .\/  u )  .\/  v
) )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) ) )
1105, 109mpd 15 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  E. r  e.  A  E. s  e.  A  ( -.  r  .<_  ( P  .\/  Q )  /\  -.  s  .<_  ( ( P  .\/  Q )  .\/  r ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   lecple 14558   joincjn 15427   Atomscatm 34060   AtLatcal 34061   HLchlt 34147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148
This theorem is referenced by:  3dim3  34265  lhp2lt  34797
  Copyright terms: Public domain W3C validator