Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1 Structured version   Unicode version

Theorem 3dim1 34140
Description: Construct a 3-dimensional volume (height-4 element) on top of a given atom  P. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dim1  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
Distinct variable groups:    r, q,
s, A    .\/ , r, s, q    .<_ , q, r, s    P, q, r, s
Allowed substitution hints:    K( s, r, q)

Proof of Theorem 3dim1
Dummy variables  u  t  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4  |-  .\/  =  ( join `  K )
2 3dim0.l . . . 4  |-  .<_  =  ( le `  K )
3 3dim0.a . . . 4  |-  A  =  ( Atoms `  K )
41, 2, 33dim0 34130 . . 3  |-  ( K  e.  HL  ->  E. t  e.  A  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )
54adantr 465 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. t  e.  A  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
6 simpl2 995 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =  t )  ->  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)
71, 2, 33dimlem1 34131 . . . . . . . . . . . 12  |-  ( ( ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  /\  P  =  t )  ->  ( P  =/=  u  /\  -.  v  .<_  ( P  .\/  u
)  /\  -.  w  .<_  ( ( P  .\/  u )  .\/  v
) ) )
873ad2antl3 1155 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =  t )  ->  ( P  =/=  u  /\  -.  v  .<_  ( P  .\/  u )  /\  -.  w  .<_  ( ( P 
.\/  u )  .\/  v ) ) )
91, 2, 33dim1lem5 34139 . . . . . . . . . . 11  |-  ( ( ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( P  =/=  u  /\  -.  v  .<_  ( P  .\/  u
)  /\  -.  w  .<_  ( ( P  .\/  u )  .\/  v
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
106, 8, 9syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =  t )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
11 simp13 1023 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
t  e.  A )
12 simp22 1025 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
v  e.  A )
13 simp23 1026 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  w  e.  A )
1411, 12, 133jca 1171 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  e.  A  /\  v  e.  A  /\  w  e.  A
) )
1514ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  (
t  e.  A  /\  v  e.  A  /\  w  e.  A )
)
16 simpll1 1030 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  ( K  e.  HL  /\  P  e.  A  /\  t  e.  A ) )
17 simp21 1024 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  u  e.  A )
18 simp32 1028 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  -.  v  .<_  ( t 
.\/  u ) )
19 simp33 1029 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )
2017, 18, 193jca 1171 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( u  e.  A  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
2120ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  (
u  e.  A  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
22 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  P  =/=  t )
23 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  P  .<_  ( t  .\/  u
) )
241, 2, 33dimlem2 34132 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  /\  ( P  =/=  t  /\  P  .<_  ( t  .\/  u ) ) )  ->  ( P  =/=  t  /\  -.  v  .<_  ( P  .\/  t )  /\  -.  w  .<_  ( ( P 
.\/  t )  .\/  v ) ) )
2516, 21, 22, 23, 24syl112anc 1227 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  ( P  =/=  t  /\  -.  v  .<_  ( P  .\/  t )  /\  -.  w  .<_  ( ( P 
.\/  t )  .\/  v ) ) )
261, 2, 33dim1lem5 34139 . . . . . . . . . . . 12  |-  ( ( ( t  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( P  =/=  t  /\  -.  v  .<_  ( P  .\/  t
)  /\  -.  w  .<_  ( ( P  .\/  t )  .\/  v
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
2715, 25, 26syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
2811, 17, 133jca 1171 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  e.  A  /\  u  e.  A  /\  w  e.  A
) )
2928ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( t  e.  A  /\  u  e.  A  /\  w  e.  A ) )
30 simp1 991 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( K  e.  HL  /\  P  e.  A  /\  t  e.  A )
)
3117, 12jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( u  e.  A  /\  v  e.  A
) )
32 simp31 1027 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
t  =/=  u )
3332, 19jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
3430, 31, 333jca 1171 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) ) )
3534ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) ) )
36 simplrl 759 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  P  =/=  t
)
37 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  -.  P  .<_  ( t  .\/  u ) )
38 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )
391, 2, 33dimlem3 34134 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u )  /\  P  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( P  =/=  t  /\  -.  u  .<_  ( P 
.\/  t )  /\  -.  w  .<_  ( ( P  .\/  t ) 
.\/  u ) ) )
4035, 36, 37, 38, 39syl13anc 1225 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  w  .<_  ( ( P  .\/  t )  .\/  u
) ) )
411, 2, 33dim1lem5 34139 . . . . . . . . . . . . . 14  |-  ( ( ( t  e.  A  /\  u  e.  A  /\  w  e.  A
)  /\  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  w  .<_  ( ( P  .\/  t )  .\/  u
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
4229, 40, 41syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
4311, 17, 123jca 1171 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  e.  A  /\  u  e.  A  /\  v  e.  A
) )
4443ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( t  e.  A  /\  u  e.  A  /\  v  e.  A ) )
45 simpl1 994 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  t  e.  A ) )
46 simpl21 1069 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  u  e.  A
)
47 simpl22 1070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  v  e.  A
)
4846, 47jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( u  e.  A  /\  v  e.  A ) )
49 simpl31 1072 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  t  =/=  u
)
50 simpl32 1073 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  -.  v  .<_  ( t  .\/  u ) )
5149, 50jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
) ) )
5245, 48, 513jca 1171 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u ) ) ) )
5352adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u ) ) ) )
54 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u
) ) )
55 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  -.  P  .<_  ( ( t  .\/  u )  .\/  v
) )
561, 2, 33dimlem4 34137 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) )  /\  -.  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  v  .<_  ( ( P  .\/  t )  .\/  u
) ) )
5753, 54, 55, 56syl3anc 1223 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  v  .<_  ( ( P  .\/  t )  .\/  u
) ) )
581, 2, 33dim1lem5 34139 . . . . . . . . . . . . . 14  |-  ( ( ( t  e.  A  /\  u  e.  A  /\  v  e.  A
)  /\  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  v  .<_  ( ( P  .\/  t )  .\/  u
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
5944, 57, 58syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
6042, 59pm2.61dan 789 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
6160anassrs 648 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  -.  P  .<_  ( t  .\/  u ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
6227, 61pm2.61dan 789 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
6310, 62pm2.61dane 2780 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
64633exp 1190 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  ->  ( ( u  e.  A  /\  v  e.  A  /\  w  e.  A )  ->  (
( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) ) ) )
65643expd 1208 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  ->  ( u  e.  A  ->  ( v  e.  A  ->  ( w  e.  A  ->  ( ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) ) ) ) )
66653exp 1190 . . . . . 6  |-  ( K  e.  HL  ->  ( P  e.  A  ->  ( t  e.  A  -> 
( u  e.  A  ->  ( v  e.  A  ->  ( w  e.  A  ->  ( ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) ) ) ) ) ) )
6766imp43 595 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  ( t  e.  A  /\  u  e.  A ) )  -> 
( v  e.  A  ->  ( w  e.  A  ->  ( ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) ) ) )
6867impd 431 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  ( t  e.  A  /\  u  e.  A ) )  -> 
( ( v  e.  A  /\  w  e.  A )  ->  (
( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) ) ) )
6968rexlimdvv 2956 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  ( t  e.  A  /\  u  e.  A ) )  -> 
( E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) )
7069rexlimdvva 2957 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( E. t  e.  A  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) )
715, 70mpd 15 1  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   E.wrex 2810   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   lecple 14553   joincjn 15422   Atomscatm 33937   HLchlt 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025
This theorem is referenced by:  3dim2  34141  2dim  34143
  Copyright terms: Public domain W3C validator