Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim0 Structured version   Unicode version

Theorem 3dim0 34921
Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dim0  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) ) )
Distinct variable groups:    q, p, r, s, A    .\/ , r, s    K, p, q, r, s
Allowed substitution hints:    .\/ ( q, p)    .<_ ( s, r, q, p)

Proof of Theorem 3dim0
StepHypRef Expression
1 3dim0.j . . 3  |-  .\/  =  ( join `  K )
2 eqid 2443 . . 3  |-  (  <o  `  K )  =  ( 
<o  `  K )
3 3dim0.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 3athgt 34920 . 2  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  ( p
(  <o  `  K )
( p  .\/  q
)  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
5 df-3an 976 . . . . . . . . . 10  |-  ( ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
) )  /\  -.  s  .<_  ( ( p 
.\/  q )  .\/  r ) ) )
6 simpll1 1036 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  K  e.  HL )
7 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( Base `  K )  =  (
Base `  K )
87, 1, 3hlatjcl 34831 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  e.  ( Base `  K ) )
98ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
p  .\/  q )  e.  ( Base `  K
) )
10 simplr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  r  e.  A )
11 3dim0.l . . . . . . . . . . . . . 14  |-  .<_  =  ( le `  K )
127, 11, 1, 2, 3cvr1 34874 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  r  e.  A )  ->  ( -.  r  .<_  ( p 
.\/  q )  <->  ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r ) ) )
136, 9, 10, 12syl3anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  ( -.  r  .<_  ( p 
.\/  q )  <->  ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r ) ) )
1413anbi2d 703 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q ) )  <-> 
( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) ) ) )
15 hllat 34828 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  Lat )
166, 15syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  K  e.  Lat )
177, 3atbase 34754 . . . . . . . . . . . . . 14  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
1817ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  r  e.  ( Base `  K
) )
197, 1latjcl 15555 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  r  e.  ( Base `  K )
)  ->  ( (
p  .\/  q )  .\/  r )  e.  (
Base `  K )
)
2016, 9, 18, 19syl3anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  .\/  q
)  .\/  r )  e.  ( Base `  K
) )
21 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  s  e.  A )
227, 11, 1, 2, 3cvr1 34874 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( ( p  .\/  q )  .\/  r
)  e.  ( Base `  K )  /\  s  e.  A )  ->  ( -.  s  .<_  ( ( p  .\/  q ) 
.\/  r )  <->  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )
236, 20, 21, 22syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  ( -.  s  .<_  ( ( p  .\/  q ) 
.\/  r )  <->  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )
2414, 23anbi12d 710 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
) )  /\  -.  s  .<_  ( ( p 
.\/  q )  .\/  r ) )  <->  ( (
p  =/=  q  /\  ( p  .\/  q ) (  <o  `  K )
( ( p  .\/  q )  .\/  r
) )  /\  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
255, 24syl5bb 257 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( ( p  =/=  q  /\  ( p 
.\/  q ) ( 
<o  `  K ) ( ( p  .\/  q
)  .\/  r )
)  /\  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
2625rexbidva 2951 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A
)  ->  ( E. s  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <->  E. s  e.  A  ( ( p  =/=  q  /\  ( p 
.\/  q ) ( 
<o  `  K ) ( ( p  .\/  q
)  .\/  r )
)  /\  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
27 r19.42v 2998 . . . . . . . . 9  |-  ( E. s  e.  A  ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  ( ( p  .\/  q )  .\/  r
) (  <o  `  K
) ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) )  <->  ( (
p  =/=  q  /\  ( p  .\/  q ) (  <o  `  K )
( ( p  .\/  q )  .\/  r
) )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) )
28 anass 649 . . . . . . . . 9  |-  ( ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) )  <->  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
2927, 28bitri 249 . . . . . . . 8  |-  ( E. s  e.  A  ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  ( ( p  .\/  q )  .\/  r
) (  <o  `  K
) ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) )  <->  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
3026, 29syl6bb 261 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A
)  ->  ( E. s  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( p  =/=  q  /\  ( ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
3130rexbidva 2951 . . . . . 6  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  E. r  e.  A  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
32 r19.42v 2998 . . . . . 6  |-  ( E. r  e.  A  ( p  =/=  q  /\  ( ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) )  <->  ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
3331, 32syl6bb 261 . . . . 5  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) )
341, 2, 3atcvr1 34881 . . . . . 6  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  =/=  q  <->  p (  <o  `  K )
( p  .\/  q
) ) )
3534anbi1d 704 . . . . 5  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )  <-> 
( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
3633, 35bitrd 253 . . . 4  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  ( p
(  <o  `  K )
( p  .\/  q
)  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) )
37363expb 1198 . . 3  |-  ( ( K  e.  HL  /\  ( p  e.  A  /\  q  e.  A
) )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
38372rexbidva 2960 . 2  |-  ( K  e.  HL  ->  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <->  E. p  e.  A  E. q  e.  A  ( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
394, 38mpbird 232 1  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   E.wrex 2794   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   Basecbs 14509   lecple 14581   joincjn 15447   Latclat 15549    <o ccvr 34727   Atomscatm 34728   HLchlt 34815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-preset 15431  df-poset 15449  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34641  df-ol 34643  df-oml 34644  df-covers 34731  df-ats 34732  df-atl 34763  df-cvlat 34787  df-hlat 34816
This theorem is referenced by:  3dim1  34931
  Copyright terms: Public domain W3C validator