Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim0 Structured version   Unicode version

Theorem 3dim0 33409
Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dim0  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) ) )
Distinct variable groups:    q, p, r, s, A    .\/ , r, s    K, p, q, r, s
Allowed substitution hints:    .\/ ( q, p)    .<_ ( s, r, q, p)

Proof of Theorem 3dim0
StepHypRef Expression
1 3dim0.j . . 3  |-  .\/  =  ( join `  K )
2 eqid 2451 . . 3  |-  (  <o  `  K )  =  ( 
<o  `  K )
3 3dim0.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 3athgt 33408 . 2  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  ( p
(  <o  `  K )
( p  .\/  q
)  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
5 df-3an 967 . . . . . . . . . 10  |-  ( ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
) )  /\  -.  s  .<_  ( ( p 
.\/  q )  .\/  r ) ) )
6 simpll1 1027 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  K  e.  HL )
7 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( Base `  K )  =  (
Base `  K )
87, 1, 3hlatjcl 33319 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  e.  ( Base `  K ) )
98ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
p  .\/  q )  e.  ( Base `  K
) )
10 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  r  e.  A )
11 3dim0.l . . . . . . . . . . . . . 14  |-  .<_  =  ( le `  K )
127, 11, 1, 2, 3cvr1 33362 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  r  e.  A )  ->  ( -.  r  .<_  ( p 
.\/  q )  <->  ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r ) ) )
136, 9, 10, 12syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  ( -.  r  .<_  ( p 
.\/  q )  <->  ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r ) ) )
1413anbi2d 703 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q ) )  <-> 
( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) ) ) )
15 hllat 33316 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  Lat )
166, 15syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  K  e.  Lat )
177, 3atbase 33242 . . . . . . . . . . . . . 14  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
1817ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  r  e.  ( Base `  K
) )
197, 1latjcl 15325 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  r  e.  ( Base `  K )
)  ->  ( (
p  .\/  q )  .\/  r )  e.  (
Base `  K )
)
2016, 9, 18, 19syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  .\/  q
)  .\/  r )  e.  ( Base `  K
) )
21 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  s  e.  A )
227, 11, 1, 2, 3cvr1 33362 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( ( p  .\/  q )  .\/  r
)  e.  ( Base `  K )  /\  s  e.  A )  ->  ( -.  s  .<_  ( ( p  .\/  q ) 
.\/  r )  <->  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )
236, 20, 21, 22syl3anc 1219 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  ( -.  s  .<_  ( ( p  .\/  q ) 
.\/  r )  <->  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )
2414, 23anbi12d 710 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
) )  /\  -.  s  .<_  ( ( p 
.\/  q )  .\/  r ) )  <->  ( (
p  =/=  q  /\  ( p  .\/  q ) (  <o  `  K )
( ( p  .\/  q )  .\/  r
) )  /\  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
255, 24syl5bb 257 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( ( p  =/=  q  /\  ( p 
.\/  q ) ( 
<o  `  K ) ( ( p  .\/  q
)  .\/  r )
)  /\  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
2625rexbidva 2845 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A
)  ->  ( E. s  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <->  E. s  e.  A  ( ( p  =/=  q  /\  ( p 
.\/  q ) ( 
<o  `  K ) ( ( p  .\/  q
)  .\/  r )
)  /\  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
27 r19.42v 2973 . . . . . . . . 9  |-  ( E. s  e.  A  ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  ( ( p  .\/  q )  .\/  r
) (  <o  `  K
) ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) )  <->  ( (
p  =/=  q  /\  ( p  .\/  q ) (  <o  `  K )
( ( p  .\/  q )  .\/  r
) )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) )
28 anass 649 . . . . . . . . 9  |-  ( ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) )  <->  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
2927, 28bitri 249 . . . . . . . 8  |-  ( E. s  e.  A  ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  ( ( p  .\/  q )  .\/  r
) (  <o  `  K
) ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) )  <->  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
3026, 29syl6bb 261 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A
)  ->  ( E. s  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( p  =/=  q  /\  ( ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
3130rexbidva 2845 . . . . . 6  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  E. r  e.  A  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
32 r19.42v 2973 . . . . . 6  |-  ( E. r  e.  A  ( p  =/=  q  /\  ( ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) )  <->  ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
3331, 32syl6bb 261 . . . . 5  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) )
341, 2, 3atcvr1 33369 . . . . . 6  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  =/=  q  <->  p (  <o  `  K )
( p  .\/  q
) ) )
3534anbi1d 704 . . . . 5  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )  <-> 
( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
3633, 35bitrd 253 . . . 4  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  ( p
(  <o  `  K )
( p  .\/  q
)  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) )
37363expb 1189 . . 3  |-  ( ( K  e.  HL  /\  ( p  e.  A  /\  q  e.  A
) )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
38372rexbidva 2865 . 2  |-  ( K  e.  HL  ->  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <->  E. p  e.  A  E. q  e.  A  ( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
394, 38mpbird 232 1  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   E.wrex 2796   class class class wbr 4392   ` cfv 5518  (class class class)co 6192   Basecbs 14278   lecple 14349   joincjn 15218   Latclat 15319    <o ccvr 33215   Atomscatm 33216   HLchlt 33303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-poset 15220  df-plt 15232  df-lub 15248  df-glb 15249  df-join 15250  df-meet 15251  df-p0 15313  df-p1 15314  df-lat 15320  df-clat 15382  df-oposet 33129  df-ol 33131  df-oml 33132  df-covers 33219  df-ats 33220  df-atl 33251  df-cvlat 33275  df-hlat 33304
This theorem is referenced by:  3dim1  33419
  Copyright terms: Public domain W3C validator