MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgrarn1 Structured version   Unicode version

Theorem 3cyclfrgrarn1 25593
Description: Every vertex in a friendship graph ( with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.)
Assertion
Ref Expression
3cyclfrgrarn1  |-  ( ( V FriendGrph  E  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) )
Distinct variable groups:    b, c, A    E, c, b    V, c, b
Allowed substitution hints:    C( b, c)

Proof of Theorem 3cyclfrgrarn1
Dummy variables  a  x  z  u  v 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2pthfrgrarn2 25591 . . 3  |-  ( V FriendGrph  E  ->  A. a  e.  V  A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( a  =/=  x  /\  x  =/=  z ) ) )
2 necom 2700 . . . . . . . . . . . 12  |-  ( A  =/=  C  <->  C  =/=  A )
3 eldifsn 4128 . . . . . . . . . . . . 13  |-  ( C  e.  ( V  \  { A } )  <->  ( C  e.  V  /\  C  =/= 
A ) )
43simplbi2com 631 . . . . . . . . . . . 12  |-  ( C  =/=  A  ->  ( C  e.  V  ->  C  e.  ( V  \  { A } ) ) )
52, 4sylbi 198 . . . . . . . . . . 11  |-  ( A  =/=  C  ->  ( C  e.  V  ->  C  e.  ( V  \  { A } ) ) )
65com12 32 . . . . . . . . . 10  |-  ( C  e.  V  ->  ( A  =/=  C  ->  C  e.  ( V  \  { A } ) ) )
76adantl 467 . . . . . . . . 9  |-  ( ( A  e.  V  /\  C  e.  V )  ->  ( A  =/=  C  ->  C  e.  ( V 
\  { A }
) ) )
87imp 430 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  A  =/=  C )  ->  C  e.  ( V  \  { A } ) )
9 sneq 4012 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  { a }  =  { A } )
109difeq2d 3589 . . . . . . . . . . . 12  |-  ( a  =  A  ->  ( V  \  { a } )  =  ( V 
\  { A }
) )
11 preq1 4082 . . . . . . . . . . . . . . . 16  |-  ( a  =  A  ->  { a ,  x }  =  { A ,  x }
)
1211eleq1d 2498 . . . . . . . . . . . . . . 15  |-  ( a  =  A  ->  ( { a ,  x }  e.  ran  E  <->  { A ,  x }  e.  ran  E ) )
1312anbi1d 709 . . . . . . . . . . . . . 14  |-  ( a  =  A  ->  (
( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  <->  ( { A ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E ) ) )
14 neeq1 2712 . . . . . . . . . . . . . . 15  |-  ( a  =  A  ->  (
a  =/=  x  <->  A  =/=  x ) )
1514anbi1d 709 . . . . . . . . . . . . . 14  |-  ( a  =  A  ->  (
( a  =/=  x  /\  x  =/=  z
)  <->  ( A  =/=  x  /\  x  =/=  z ) ) )
1613, 15anbi12d 715 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  (
( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  (
a  =/=  x  /\  x  =/=  z ) )  <-> 
( ( { A ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) ) ) )
1716rexbidv 2946 . . . . . . . . . . . 12  |-  ( a  =  A  ->  ( E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  (
a  =/=  x  /\  x  =/=  z ) )  <->  E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) ) ) )
1810, 17raleqbidv 3046 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( a  =/=  x  /\  x  =/=  z ) )  <->  A. z  e.  ( V  \  { A } ) E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) ) ) )
1918rspcv 3184 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( A. a  e.  V  A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( a  =/=  x  /\  x  =/=  z ) )  ->  A. z  e.  ( V  \  { A }
) E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) ) ) )
2019adantr 466 . . . . . . . . 9  |-  ( ( A  e.  V  /\  C  e.  V )  ->  ( A. a  e.  V  A. z  e.  ( V  \  {
a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  ( a  =/=  x  /\  x  =/=  z ) )  ->  A. z  e.  ( V  \  { A }
) E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) ) ) )
2120adantr 466 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  A  =/=  C )  ->  ( A. a  e.  V  A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  (
a  =/=  x  /\  x  =/=  z ) )  ->  A. z  e.  ( V  \  { A } ) E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) ) ) )
22 preq2 4083 . . . . . . . . . . . . 13  |-  ( z  =  C  ->  { x ,  z }  =  { x ,  C } )
2322eleq1d 2498 . . . . . . . . . . . 12  |-  ( z  =  C  ->  ( { x ,  z }  e.  ran  E  <->  { x ,  C }  e.  ran  E ) )
2423anbi2d 708 . . . . . . . . . . 11  |-  ( z  =  C  ->  (
( { A ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  <->  ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E ) ) )
25 neeq2 2714 . . . . . . . . . . . 12  |-  ( z  =  C  ->  (
x  =/=  z  <->  x  =/=  C ) )
2625anbi2d 708 . . . . . . . . . . 11  |-  ( z  =  C  ->  (
( A  =/=  x  /\  x  =/=  z
)  <->  ( A  =/=  x  /\  x  =/= 
C ) ) )
2724, 26anbi12d 715 . . . . . . . . . 10  |-  ( z  =  C  ->  (
( ( { A ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) )  <->  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C
) ) ) )
2827rexbidv 2946 . . . . . . . . 9  |-  ( z  =  C  ->  ( E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) )  <->  E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C
) ) ) )
2928rspcv 3184 . . . . . . . 8  |-  ( C  e.  ( V  \  { A } )  -> 
( A. z  e.  ( V  \  { A } ) E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  z }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  z ) )  ->  E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) ) ) )
308, 21, 29sylsyld 58 . . . . . . 7  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  A  =/=  C )  ->  ( A. a  e.  V  A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  (
a  =/=  x  /\  x  =/=  z ) )  ->  E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) ) ) )
31 2pthfrgrarn 25590 . . . . . . . . . 10  |-  ( V FriendGrph  E  ->  A. u  e.  V  A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E ) )
32 necom 2700 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  =/=  x  <->  x  =/=  A )
33 eldifsn 4128 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  ( V  \  { A } )  <->  ( x  e.  V  /\  x  =/=  A ) )
3433simplbi2com 631 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =/=  A  ->  (
x  e.  V  ->  x  e.  ( V  \  { A } ) ) )
3532, 34sylbi 198 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  =/=  x  ->  (
x  e.  V  ->  x  e.  ( V  \  { A } ) ) )
3635adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  =/=  x  /\  A  e.  V )  ->  ( x  e.  V  ->  x  e.  ( V 
\  { A }
) ) )
3736imp 430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  =/=  x  /\  A  e.  V
)  /\  x  e.  V )  ->  x  e.  ( V  \  { A } ) )
38 sneq 4012 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( u  =  A  ->  { u }  =  { A } )
3938difeq2d 3589 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  A  ->  ( V  \  { u }
)  =  ( V 
\  { A }
) )
40 preq1 4082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( u  =  A  ->  { u ,  y }  =  { A ,  y } )
4140eleq1d 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  A  ->  ( { u ,  y }  e.  ran  E  <->  { A ,  y }  e.  ran  E ) )
4241anbi1d 709 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( u  =  A  ->  (
( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  <->  ( { A ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E ) ) )
4342rexbidv 2946 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  A  ->  ( E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  <->  E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
) ) )
4439, 43raleqbidv 3046 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  A  ->  ( A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  <->  A. v  e.  ( V  \  { A } ) E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  {
y ,  v }  e.  ran  E ) ) )
4544rspcv 3184 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  ->  A. v  e.  ( V  \  { A } ) E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  {
y ,  v }  e.  ran  E ) ) )
4645adantl 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  =/=  x  /\  A  e.  V )  ->  ( A. u  e.  V  A. v  e.  ( V  \  {
u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  A. v  e.  ( V  \  { A } ) E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  {
y ,  v }  e.  ran  E ) ) )
4746adantr 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  =/=  x  /\  A  e.  V
)  /\  x  e.  V )  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  ->  A. v  e.  ( V  \  { A } ) E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  {
y ,  v }  e.  ran  E ) ) )
48 preq2 4083 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  x  ->  { y ,  v }  =  { y ,  x } )
4948eleq1d 2498 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  =  x  ->  ( { y ,  v }  e.  ran  E  <->  { y ,  x }  e.  ran  E ) )
5049anbi2d 708 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  x  ->  (
( { A , 
y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  <->  ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E ) ) )
5150rexbidv 2946 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  x  ->  ( E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  <->  E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E ) ) )
5251rspcv 3184 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( V  \  { A } )  -> 
( A. v  e.  ( V  \  { A } ) E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  {
y ,  v }  e.  ran  E )  ->  E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E ) ) )
5337, 47, 52sylsyld 58 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  =/=  x  /\  A  e.  V
)  /\  x  e.  V )  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  ->  E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  {
y ,  x }  e.  ran  E ) ) )
54 prcom 4081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  { A ,  y }  =  { y ,  A }
5554eleq1i 2506 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( { A ,  y }  e.  ran  E  <->  { y ,  A }  e.  ran  E )
56 prcom 4081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  { y ,  x }  =  { x ,  y }
5756eleq1i 2506 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( { y ,  x }  e.  ran  E  <->  { x ,  y }  e.  ran  E )
5855, 57anbi12ci 702 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E )  <-> 
( { x ,  y }  e.  ran  E  /\  { y ,  A }  e.  ran  E ) )
59 preq2 4083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( b  =  x  ->  { A ,  b }  =  { A ,  x }
)
6059eleq1d 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( b  =  x  ->  ( { A ,  b }  e.  ran  E  <->  { A ,  x }  e.  ran  E ) )
61 preq1 4082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( b  =  x  ->  { b ,  c }  =  { x ,  c } )
6261eleq1d 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( b  =  x  ->  ( { b ,  c }  e.  ran  E  <->  { x ,  c }  e.  ran  E ) )
63 biidd 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( b  =  x  ->  ( { c ,  A }  e.  ran  E  <->  { c ,  A }  e.  ran  E ) )
6460, 62, 633anbi123d 1335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( b  =  x  ->  (
( { A , 
b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E )  <->  ( { A ,  x }  e.  ran  E  /\  { x ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) )
65 biidd 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( c  =  y  ->  ( { A ,  x }  e.  ran  E  <->  { A ,  x }  e.  ran  E ) )
66 preq2 4083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( c  =  y  ->  { x ,  c }  =  { x ,  y } )
6766eleq1d 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( c  =  y  ->  ( { x ,  c }  e.  ran  E  <->  { x ,  y }  e.  ran  E ) )
68 preq1 4082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( c  =  y  ->  { c ,  A }  =  { y ,  A } )
6968eleq1d 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( c  =  y  ->  ( { c ,  A }  e.  ran  E  <->  { y ,  A }  e.  ran  E ) )
7065, 67, 693anbi123d 1335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( c  =  y  ->  (
( { A ,  x }  e.  ran  E  /\  { x ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E )  <->  ( { A ,  x }  e.  ran  E  /\  { x ,  y }  e.  ran  E  /\  { y ,  A }  e.  ran  E ) ) )
7164, 70rspc2ev 3199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  V  /\  y  e.  V  /\  ( { A ,  x }  e.  ran  E  /\  { x ,  y }  e.  ran  E  /\  { y ,  A }  e.  ran  E ) )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) )
72713expa 1205 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  ( { A ,  x }  e.  ran  E  /\  {
x ,  y }  e.  ran  E  /\  { y ,  A }  e.  ran  E ) )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) )
7372expcom 436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( { A ,  x }  e.  ran  E  /\  { x ,  y }  e.  ran  E  /\  { y ,  A }  e.  ran  E )  -> 
( ( x  e.  V  /\  y  e.  V )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) )
74733expib 1208 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( { A ,  x }  e.  ran  E  ->  (
( { x ,  y }  e.  ran  E  /\  { y ,  A }  e.  ran  E )  ->  ( (
x  e.  V  /\  y  e.  V )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
7558, 74syl5bi 220 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( { A ,  x }  e.  ran  E  ->  (
( { A , 
y }  e.  ran  E  /\  { y ,  x }  e.  ran  E )  ->  ( (
x  e.  V  /\  y  e.  V )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
7675adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  -> 
( ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E )  ->  (
( x  e.  V  /\  y  e.  V
)  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
7776com13 83 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  V  /\  y  e.  V )  ->  ( ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E )  ->  (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
7877rexlimdva 2924 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  V  ->  ( E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E )  ->  ( ( { A ,  x }  e.  ran  E  /\  {
x ,  C }  e.  ran  E )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
7978com13 83 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  -> 
( E. y  e.  V  ( { A ,  y }  e.  ran  E  /\  { y ,  x }  e.  ran  E )  ->  (
x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
8053, 79syl9 73 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  =/=  x  /\  A  e.  V
)  /\  x  e.  V )  ->  (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
8180exp31 607 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =/=  x  ->  ( A  e.  V  ->  ( x  e.  V  -> 
( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) ) ) )
8281com24 90 . . . . . . . . . . . . . . . . . 18  |-  ( A  =/=  x  ->  (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  ->  ( x  e.  V  ->  ( A  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  ->  (
x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) ) ) )
8382adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( A  =/=  x  /\  x  =/=  C )  -> 
( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  ->  ( x  e.  V  ->  ( A  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  ->  (
x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) ) ) )
8483impcom 431 . . . . . . . . . . . . . . . 16  |-  ( ( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  -> 
( x  e.  V  ->  ( A  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  {
u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) ) )
8584com15 96 . . . . . . . . . . . . . . 15  |-  ( x  e.  V  ->  (
x  e.  V  -> 
( A  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  {
u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) ) )
8685pm2.43i 49 . . . . . . . . . . . . . 14  |-  ( x  e.  V  ->  ( A  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u }
) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E )  ->  (
( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
8786com12 32 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
x  e.  V  -> 
( A. u  e.  V  A. v  e.  ( V  \  {
u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
8887adantr 466 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  C  e.  V )  ->  ( x  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  {
u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
8988adantr 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  A  =/=  C )  ->  ( x  e.  V  ->  ( A. u  e.  V  A. v  e.  ( V  \  { u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
9089com4t 88 . . . . . . . . . 10  |-  ( A. u  e.  V  A. v  e.  ( V  \  { u } ) E. y  e.  V  ( { u ,  y }  e.  ran  E  /\  { y ,  v }  e.  ran  E
)  ->  ( (
( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  -> 
( ( ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C )  ->  (
x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
9131, 90syl 17 . . . . . . . . 9  |-  ( V FriendGrph  E  ->  ( ( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C
) )  ->  (
( ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C )  ->  (
x  e.  V  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
9291com14 91 . . . . . . . 8  |-  ( x  e.  V  ->  (
( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  -> 
( ( ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C )  ->  ( V FriendGrph  E  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
9392rexlimiv 2918 . . . . . . 7  |-  ( E. x  e.  V  ( ( { A ,  x }  e.  ran  E  /\  { x ,  C }  e.  ran  E )  /\  ( A  =/=  x  /\  x  =/=  C ) )  -> 
( ( ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C )  ->  ( V FriendGrph  E  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
9430, 93syl6 34 . . . . . 6  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  A  =/=  C )  ->  ( A. a  e.  V  A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  (
a  =/=  x  /\  x  =/=  z ) )  ->  ( ( ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  ( V FriendGrph  E  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
9594pm2.43a 51 . . . . 5  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  A  =/=  C )  ->  ( A. a  e.  V  A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  (
a  =/=  x  /\  x  =/=  z ) )  ->  ( V FriendGrph  E  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  { b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
9695ex 435 . . . 4  |-  ( ( A  e.  V  /\  C  e.  V )  ->  ( A  =/=  C  ->  ( A. a  e.  V  A. z  e.  ( V  \  {
a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  ( a  =/=  x  /\  x  =/=  z ) )  -> 
( V FriendGrph  E  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
9796com4t 88 . . 3  |-  ( A. a  e.  V  A. z  e.  ( V  \  { a } ) E. x  e.  V  ( ( { a ,  x }  e.  ran  E  /\  { x ,  z }  e.  ran  E )  /\  (
a  =/=  x  /\  x  =/=  z ) )  ->  ( V FriendGrph  E  -> 
( ( A  e.  V  /\  C  e.  V )  ->  ( A  =/=  C  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) ) )
981, 97mpcom 37 . 2  |-  ( V FriendGrph  E  ->  ( ( A  e.  V  /\  C  e.  V )  ->  ( A  =/=  C  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) ) ) )
99983imp 1199 1  |-  ( ( V FriendGrph  E  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  E. b  e.  V  E. c  e.  V  ( { A ,  b }  e.  ran  E  /\  {
b ,  c }  e.  ran  E  /\  { c ,  A }  e.  ran  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783    \ cdif 3439   {csn 4002   {cpr 4004   class class class wbr 4426   ran crn 4855   FriendGrph cfrgra 25569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-hash 12513  df-usgra 24914  df-frgra 25570
This theorem is referenced by:  3cyclfrgrarn  25594
  Copyright terms: Public domain W3C validator