Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3g Structured version   Unicode version

Theorem 3brtr3g 4487
 Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1
3brtr3g.2
3brtr3g.3
Assertion
Ref Expression
3brtr3g

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2
2 3brtr3g.2 . . 3
3 3brtr3g.3 . . 3
42, 3breq12i 4465 . 2
51, 4sylib 196 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1395   class class class wbr 4456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-br 4457 This theorem is referenced by:  syl5eqbrr  4490  syl6breq  4495  ssenen  7710  adderpq  9351  mulerpq  9352  ltaddnq  9369  ege2le3  13837  ovolfiniun  22038  dvfsumlem3  22555  basellem9  23488  pnt2  23924  pnt  23925  siilem1  25893  omndaddr  27857  ogrpaddltrd  27870
 Copyright terms: Public domain W3C validator