Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3bior1fd Unicode version

Theorem 3bior1fd 28176
Description: A wff is equivalent to its threefold disjunction with single falsehood, analogous to biorf 394. (Contributed by Alexander van der Vekens, 8-Sep-2017.)
Hypothesis
Ref Expression
3biorfd.1  |-  ( ph  ->  -.  th )
Assertion
Ref Expression
3bior1fd  |-  ( ph  ->  ( ( ch  \/  ps )  <->  ( th  \/  ch  \/  ps ) ) )

Proof of Theorem 3bior1fd
StepHypRef Expression
1 3biorfd.1 . . 3  |-  ( ph  ->  -.  th )
2 biorf 394 . . 3  |-  ( -. 
th  ->  ( ( ch  \/  ps )  <->  ( th  \/  ( ch  \/  ps ) ) ) )
31, 2syl 15 . 2  |-  ( ph  ->  ( ( ch  \/  ps )  <->  ( th  \/  ( ch  \/  ps ) ) ) )
4 3orass 937 . 2  |-  ( ( th  \/  ch  \/  ps )  <->  ( th  \/  ( ch  \/  ps ) ) )
53, 4syl6bbr 254 1  |-  ( ph  ->  ( ( ch  \/  ps )  <->  ( th  \/  ch  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    \/ w3o 933
This theorem is referenced by:  3bior1fand  28177  3bior2fd  28178  nb3graprlem2  28287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
  Copyright terms: Public domain W3C validator