MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bior1fand Structured version   Unicode version

Theorem 3bior1fand 1333
Description: A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017.)
Hypothesis
Ref Expression
3biorfd.1  |-  ( ph  ->  -.  th )
Assertion
Ref Expression
3bior1fand  |-  ( ph  ->  ( ( ch  \/  ps )  <->  ( ( th 
/\  ta )  \/  ch  \/  ps ) ) )

Proof of Theorem 3bior1fand
StepHypRef Expression
1 3biorfd.1 . . 3  |-  ( ph  ->  -.  th )
21intnanrd 915 . 2  |-  ( ph  ->  -.  ( th  /\  ta ) )
323bior1fd 1332 1  |-  ( ph  ->  ( ( ch  \/  ps )  <->  ( ( th 
/\  ta )  \/  ch  \/  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    \/ w3o 970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator