![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3biant1d | Structured version Visualization version Unicode version |
Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 510. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
Ref | Expression |
---|---|
3biantd.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3biant1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3biantd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biantrurd 511 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 3anass 988 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6bbr 267 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 189 df-an 373 df-3an 986 |
This theorem is referenced by: metuel2 21573 itgsubst 22994 clwlkisclwwlk 25510 itg2addnclem2 31987 |
Copyright terms: Public domain | W3C validator |