Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem7 Structured version   Unicode version

Theorem 3atlem7 32470
Description: Lemma for 3at 32471. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l  |-  .<_  =  ( le `  K )
3at.j  |-  .\/  =  ( join `  K )
3at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3atlem7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )

Proof of Theorem 3atlem7
StepHypRef Expression
1 simpl1 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  Q  .<_  ( P  .\/  U ) )  ->  ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
) )
2 simpl2l 1048 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  Q  .<_  ( P  .\/  U ) )  ->  -.  R  .<_  ( P  .\/  Q
) )
3 simpl2r 1049 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  Q  .<_  ( P  .\/  U ) )  ->  P  =/=  Q )
4 simpr 459 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  Q  .<_  ( P  .\/  U ) )  ->  Q  .<_  ( P  .\/  U ) )
5 simpl3 1000 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  Q  .<_  ( P  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )
6 3at.l . . . 4  |-  .<_  =  ( le `  K )
7 3at.j . . . 4  |-  .\/  =  ( join `  K )
8 3at.a . . . 4  |-  A  =  ( Atoms `  K )
96, 7, 83atlem6 32469 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q  /\  Q  .<_  ( P 
.\/  U ) )  /\  ( ( P 
.\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )
101, 2, 3, 4, 5, 9syl131anc 1241 . 2  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  Q  .<_  ( P  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( S  .\/  T ) 
.\/  U ) )
11 simpl1 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  ->  ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) ) )
12 simpl2l 1048 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  ->  -.  R  .<_  ( P  .\/  Q ) )
13 simpl2r 1049 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  ->  P  =/=  Q )
14 simpr 459 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  ->  -.  Q  .<_  ( P  .\/  U ) )
15 simpl3 1000 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  ->  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )
166, 7, 83atlem5 32468 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q  /\  -.  Q  .<_  ( P 
.\/  U ) )  /\  ( ( P 
.\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )
1711, 12, 13, 14, 15, 16syl131anc 1241 . 2  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
Q )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )
1810, 17pm2.61dan 790 1  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840    =/= wne 2596   class class class wbr 4392   ` cfv 5523  (class class class)co 6232   lecple 14806   joincjn 15787   Atomscatm 32245   HLchlt 32332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-reu 2758  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-preset 15771  df-poset 15789  df-plt 15802  df-lub 15818  df-glb 15819  df-join 15820  df-meet 15821  df-p0 15883  df-lat 15890  df-covers 32248  df-ats 32249  df-atl 32280  df-cvlat 32304  df-hlat 32333
This theorem is referenced by:  3at  32471
  Copyright terms: Public domain W3C validator