Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem4 Structured version   Unicode version

Theorem 3atlem4 34157
Description: Lemma for 3at 34161. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l  |-  .<_  =  ( le `  K )
3at.j  |-  .\/  =  ( join `  K )
3at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3atlem4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  R ) )

Proof of Theorem 3atlem4
StepHypRef Expression
1 simp11 1021 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  K  e.  HL )
2 simp12 1022 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )
)
3 simp13l 1106 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  S  e.  A )
4 simp13r 1107 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  T  e.  A )
5 simp123 1125 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  R  e.  A )
63, 4, 53jca 1171 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  ( S  e.  A  /\  T  e.  A  /\  R  e.  A )
)
7 simp2l 1017 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  -.  R  .<_  ( P  .\/  Q ) )
8 hllat 34035 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
91, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  K  e.  Lat )
10 eqid 2460 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
11 3at.a . . . . . 6  |-  A  =  ( Atoms `  K )
1210, 11atbase 33961 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
135, 12syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  R  e.  ( Base `  K
) )
14 simp121 1123 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  P  e.  A )
1510, 11atbase 33961 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1614, 15syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  P  e.  ( Base `  K
) )
17 simp122 1124 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  Q  e.  A )
1810, 11atbase 33961 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1917, 18syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  Q  e.  ( Base `  K
) )
20 3at.l . . . . 5  |-  .<_  =  ( le `  K )
21 3at.j . . . . 5  |-  .\/  =  ( join `  K )
2210, 20, 21latnlej1l 15545 . . . 4  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  R  =/=  P )
239, 13, 16, 19, 7, 22syl131anc 1236 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  R  =/=  P )
2423necomd 2731 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  P  =/=  R )
25 simp2r 1018 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  P  =/=  Q )
2625necomd 2731 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  Q  =/=  P )
2720, 21, 11hlatexch1 34066 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  Q  =/=  P )  ->  ( Q  .<_  ( P  .\/  R
)  ->  R  .<_  ( P  .\/  Q ) ) )
281, 17, 5, 14, 26, 27syl131anc 1236 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  ( Q  .<_  ( P  .\/  R )  ->  R  .<_  ( P  .\/  Q ) ) )
297, 28mtod 177 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  -.  Q  .<_  ( P  .\/  R ) )
30 simp3 993 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )
3120, 21, 113atlem3 34156 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  R  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  R  /\  -.  Q  .<_  ( P 
.\/  R ) )  /\  ( ( P 
.\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  R ) )
321, 2, 6, 7, 24, 29, 30, 31syl331anc 1248 1  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  Q
)  /\  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  R ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   Basecbs 14479   lecple 14551   joincjn 15420   Latclat 15521   Atomscatm 33935   HLchlt 34022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-lat 15522  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023
This theorem is referenced by:  3atlem5  34158
  Copyright terms: Public domain W3C validator