Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem3 Structured version   Unicode version

Theorem 3atlem3 33468
Description: Lemma for 3at 33473. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l  |-  .<_  =  ( le `  K )
3at.j  |-  .\/  =  ( join `  K )
3at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3atlem3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  U  /\  -.  Q  .<_  ( P 
.\/  U ) )  /\  ( ( P 
.\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )

Proof of Theorem 3atlem3
StepHypRef Expression
1 simpl1 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
) )
2 simpl21 1066 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  -.  R  .<_  ( P  .\/  Q
) )
3 simpl22 1067 . . . 4  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  P  =/=  U )
4 simpr 461 . . . 4  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  P  .<_  ( T  .\/  U ) )
53, 4jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  ( P  =/=  U  /\  P  .<_  ( T  .\/  U ) ) )
6 simpl23 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  -.  Q  .<_  ( P  .\/  U
) )
7 simpl3 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )
8 3at.l . . . 4  |-  .<_  =  ( le `  K )
9 3at.j . . . 4  |-  .\/  =  ( join `  K )
10 3at.a . . . 4  |-  A  =  ( Atoms `  K )
118, 9, 103atlem2 33467 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( S  .\/  T ) 
.\/  U ) )
121, 2, 5, 6, 7, 11syl131anc 1232 . 2  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  P  .<_  ( T  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( S  .\/  T ) 
.\/  U ) )
13 simpl1 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  P  .<_  ( T  .\/  U
) )  ->  ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) ) )
14 simpl21 1066 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  P  .<_  ( T  .\/  U
) )  ->  -.  R  .<_  ( P  .\/  Q ) )
15 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  P  .<_  ( T  .\/  U
) )  ->  -.  P  .<_  ( T  .\/  U ) )
16 simpl23 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  P  .<_  ( T  .\/  U
) )  ->  -.  Q  .<_  ( P  .\/  U ) )
17 simpl3 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  P  .<_  ( T  .\/  U
) )  ->  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )
188, 9, 103atlem1 33466 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  P  .<_  ( T  .\/  U )  /\  -.  Q  .<_  ( P  .\/  U ) )  /\  ( ( P  .\/  Q ) 
.\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( S  .\/  T ) 
.\/  U ) )
1913, 14, 15, 16, 17, 18syl131anc 1232 . 2  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/= 
U  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  /\  -.  P  .<_  ( T  .\/  U
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )
2012, 19pm2.61dan 789 1  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  P  =/=  U  /\  -.  Q  .<_  ( P 
.\/  U ) )  /\  ( ( P 
.\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( S 
.\/  T )  .\/  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   lecple 14365   joincjn 15234   Atomscatm 33247   HLchlt 33334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-lat 15336  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335
This theorem is referenced by:  3atlem4  33469  3atlem5  33470
  Copyright terms: Public domain W3C validator