Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem2 Structured version   Unicode version

Theorem 3atlem2 34289
Description: Lemma for 3at 34295. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
3at.l  |-  .<_  =  ( le `  K )
3at.j  |-  .\/  =  ( join `  K )
3at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3atlem2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( S  .\/  T ) 
.\/  U ) )

Proof of Theorem 3atlem2
StepHypRef Expression
1 simp3 998 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )
2 simp11 1026 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  K  e.  HL )
3 hllat 34169 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  K  e.  Lat )
5 simp121 1128 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  P  e.  A )
6 simp122 1129 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  Q  e.  A )
7 eqid 2467 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
8 3at.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
9 3at.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 34172 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1228 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
12 simp123 1130 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  R  e.  A )
137, 9atbase 34095 . . . . . . . 8  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1412, 13syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  R  e.  ( Base `  K )
)
15 simp131 1131 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  S  e.  A )
16 simp132 1132 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  T  e.  A )
177, 8, 9hlatjcl 34172 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
182, 15, 16, 17syl3anc 1228 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( S  .\/  T )  e.  (
Base `  K )
)
19 simp133 1133 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  U  e.  A )
207, 9atbase 34095 . . . . . . . . 9  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
2119, 20syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  U  e.  ( Base `  K )
)
227, 8latjcl 15537 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( ( S  .\/  T )  .\/  U )  e.  ( Base `  K ) )
234, 18, 21, 22syl3anc 1228 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( S  .\/  T )  .\/  U )  e.  ( Base `  K ) )
24 3at.l . . . . . . . 8  |-  .<_  =  ( le `  K )
257, 24, 8latjle12 15548 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  R  e.  ( Base `  K
)  /\  ( ( S  .\/  T )  .\/  U )  e.  ( Base `  K ) ) )  ->  ( ( ( P  .\/  Q ) 
.<_  ( ( S  .\/  T )  .\/  U )  /\  R  .<_  ( ( S  .\/  T ) 
.\/  U ) )  <-> 
( ( P  .\/  Q )  .\/  R ) 
.<_  ( ( S  .\/  T )  .\/  U ) ) )
264, 11, 14, 23, 25syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( (
( P  .\/  Q
)  .<_  ( ( S 
.\/  T )  .\/  U )  /\  R  .<_  ( ( S  .\/  T
)  .\/  U )
)  <->  ( ( P 
.\/  Q )  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) ) )
271, 26mpbird 232 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .<_  ( ( S  .\/  T )  .\/  U )  /\  R  .<_  ( ( S  .\/  T ) 
.\/  U ) ) )
2827simprd 463 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  R  .<_  ( ( S  .\/  T
)  .\/  U )
)
298, 9hlatjass 34175 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( S  .\/  T
)  .\/  U )  =  ( S  .\/  ( T  .\/  U ) ) )
302, 15, 16, 19, 29syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( S  .\/  T )  .\/  U )  =  ( S 
.\/  ( T  .\/  U ) ) )
31 simp22r 1116 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  P  .<_  ( T  .\/  U ) )
32 simp22l 1115 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  P  =/=  U )
3324, 8, 9hlatexchb2 34199 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  T  e.  A  /\  U  e.  A
)  /\  P  =/=  U )  ->  ( P  .<_  ( T  .\/  U
)  <->  ( P  .\/  U )  =  ( T 
.\/  U ) ) )
342, 5, 16, 19, 32, 33syl131anc 1241 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( P  .<_  ( T  .\/  U
)  <->  ( P  .\/  U )  =  ( T 
.\/  U ) ) )
3531, 34mpbid 210 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( P  .\/  U )  =  ( T  .\/  U ) )
3635oveq2d 6299 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( S  .\/  ( P  .\/  U
) )  =  ( S  .\/  ( T 
.\/  U ) ) )
3730, 36eqtr4d 2511 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( S  .\/  T )  .\/  U )  =  ( S 
.\/  ( P  .\/  U ) ) )
388, 9hlatjass 34175 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  U )  =  ( P  .\/  ( Q  .\/  U ) ) )
392, 5, 6, 19, 38syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  U )  =  ( P 
.\/  ( Q  .\/  U ) ) )
408, 9hlatj12 34176 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  U  e.  A
) )  ->  ( P  .\/  ( Q  .\/  U ) )  =  ( Q  .\/  ( P 
.\/  U ) ) )
412, 5, 6, 19, 40syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( P  .\/  ( Q  .\/  U
) )  =  ( Q  .\/  ( P 
.\/  U ) ) )
428, 9hlatj32 34177 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( P 
.\/  R )  .\/  Q ) )
432, 5, 6, 12, 42syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( P  .\/  R ) 
.\/  Q ) )
441, 43, 303brtr3d 4476 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  R )  .\/  Q )  .<_  ( S  .\/  ( T  .\/  U
) ) )
457, 8, 9hlatjcl 34172 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
462, 5, 12, 45syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( P  .\/  R )  e.  (
Base `  K )
)
477, 9atbase 34095 . . . . . . . . . . . 12  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
486, 47syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  Q  e.  ( Base `  K )
)
497, 9atbase 34095 . . . . . . . . . . . . 13  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
5015, 49syl 16 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  S  e.  ( Base `  K )
)
517, 8, 9hlatjcl 34172 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
522, 16, 19, 51syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( T  .\/  U )  e.  (
Base `  K )
)
537, 8latjcl 15537 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  ( T  .\/  U )  e.  ( Base `  K
) )  ->  ( S  .\/  ( T  .\/  U ) )  e.  (
Base `  K )
)
544, 50, 52, 53syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( S  .\/  ( T  .\/  U
) )  e.  (
Base `  K )
)
557, 24, 8latjle12 15548 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  R )  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
)  /\  ( S  .\/  ( T  .\/  U
) )  e.  (
Base `  K )
) )  ->  (
( ( P  .\/  R )  .<_  ( S  .\/  ( T  .\/  U
) )  /\  Q  .<_  ( S  .\/  ( T  .\/  U ) ) )  <->  ( ( P 
.\/  R )  .\/  Q )  .<_  ( S  .\/  ( T  .\/  U
) ) ) )
564, 46, 48, 54, 55syl13anc 1230 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( (
( P  .\/  R
)  .<_  ( S  .\/  ( T  .\/  U ) )  /\  Q  .<_  ( S  .\/  ( T 
.\/  U ) ) )  <->  ( ( P 
.\/  R )  .\/  Q )  .<_  ( S  .\/  ( T  .\/  U
) ) ) )
5744, 56mpbird 232 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  R )  .<_  ( S  .\/  ( T 
.\/  U ) )  /\  Q  .<_  ( S 
.\/  ( T  .\/  U ) ) ) )
5857simprd 463 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  Q  .<_  ( S  .\/  ( T 
.\/  U ) ) )
5958, 36breqtrrd 4473 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  Q  .<_  ( S  .\/  ( P 
.\/  U ) ) )
607, 8, 9hlatjcl 34172 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
612, 5, 19, 60syl3anc 1228 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( P  .\/  U )  e.  (
Base `  K )
)
62 simp23 1031 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  -.  Q  .<_  ( P  .\/  U
) )
637, 24, 8, 9hlexchb2 34190 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  S  e.  A  /\  ( P  .\/  U
)  e.  ( Base `  K ) )  /\  -.  Q  .<_  ( P 
.\/  U ) )  ->  ( Q  .<_  ( S  .\/  ( P 
.\/  U ) )  <-> 
( Q  .\/  ( P  .\/  U ) )  =  ( S  .\/  ( P  .\/  U ) ) ) )
642, 6, 15, 61, 62, 63syl131anc 1241 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( Q  .<_  ( S  .\/  ( P  .\/  U ) )  <-> 
( Q  .\/  ( P  .\/  U ) )  =  ( S  .\/  ( P  .\/  U ) ) ) )
6559, 64mpbid 210 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( Q  .\/  ( P  .\/  U
) )  =  ( S  .\/  ( P 
.\/  U ) ) )
6639, 41, 653eqtrd 2512 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  U )  =  ( S 
.\/  ( P  .\/  U ) ) )
6737, 66eqtr4d 2511 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( S  .\/  T )  .\/  U )  =  ( ( P  .\/  Q ) 
.\/  U ) )
6828, 67breqtrd 4471 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  R  .<_  ( ( P  .\/  Q
)  .\/  U )
)
69 simp21 1029 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  -.  R  .<_  ( P  .\/  Q
) )
707, 24, 8, 9hlexchb1 34189 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  U  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K ) )  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  ( R  .<_  ( ( P  .\/  Q
)  .\/  U )  <->  ( ( P  .\/  Q
)  .\/  R )  =  ( ( P 
.\/  Q )  .\/  U ) ) )
712, 12, 19, 11, 69, 70syl131anc 1241 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( R  .<_  ( ( P  .\/  Q )  .\/  U )  <-> 
( ( P  .\/  Q )  .\/  R )  =  ( ( P 
.\/  Q )  .\/  U ) ) )
7268, 71mpbid 210 . 2  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( P  .\/  Q ) 
.\/  U ) )
7372, 67eqtr4d 2511 1  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  ( P  =/= 
U  /\  P  .<_  ( T  .\/  U ) )  /\  -.  Q  .<_  ( P  .\/  U
) )  /\  (
( P  .\/  Q
)  .\/  R )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  =  ( ( S  .\/  T ) 
.\/  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5587  (class class class)co 6283   Basecbs 14489   lecple 14561   joincjn 15430   Latclat 15531   Atomscatm 34069   HLchlt 34156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-poset 15432  df-plt 15444  df-lub 15460  df-glb 15461  df-join 15462  df-meet 15463  df-p0 15525  df-lat 15532  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157
This theorem is referenced by:  3atlem3  34290
  Copyright terms: Public domain W3C validator