MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Unicode version

Theorem 3anrev 982
Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ch  /\  ps  /\ 
ph ) )

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 978 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ps  /\  ph  /\ 
ch ) )
2 3anrot 976 . 2  |-  ( ( ch  /\  ps  /\  ph )  <->  ( ps  /\  ph 
/\  ch ) )
31, 2bitr4i 252 1  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ch  /\  ps  /\ 
ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973
This theorem is referenced by:  3com13  1199  an33rean  1340  nnmcan  7223  odupos  15905  frgra3v  25148  pocnv  29399  btwnswapid2  29861  colinbtwnle  29961  uunT11p2  33974  uunT12p5  33980  uun2221p2  33991  bnj345  34152  bnj1098  34228
  Copyright terms: Public domain W3C validator