MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim2i Structured version   Unicode version

Theorem 3anim2i 1193
Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
Hypothesis
Ref Expression
3animi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
3anim2i  |-  ( ( ch  /\  ph  /\  th )  ->  ( ch  /\ 
ps  /\  th )
)

Proof of Theorem 3anim2i
StepHypRef Expression
1 id 23 . 2  |-  ( ch 
->  ch )
2 3animi.1 . 2  |-  ( ph  ->  ps )
3 id 23 . 2  |-  ( th 
->  th )
41, 2, 33anim123i 1191 1  |-  ( ( ch  /\  ph  /\  th )  ->  ( ch  /\ 
ps  /\  th )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 985
This theorem is referenced by:  elfzo0z  11960  mdetunilem9  19637  chpdmat  19857  welb  31983  lincreslvec3  39581
  Copyright terms: Public domain W3C validator