MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Unicode version

Theorem 3anbi1i 1178
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
3anbi1i  |-  ( (
ph  /\  ch  /\  th ) 
<->  ( ps  /\  ch  /\ 
th ) )

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2  |-  ( ph  <->  ps )
2 biid 236 . 2  |-  ( ch  <->  ch )
3 biid 236 . 2  |-  ( th  <->  th )
41, 2, 33anbi123i 1176 1  |-  ( (
ph  /\  ch  /\  th ) 
<->  ( ps  /\  ch  /\ 
th ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  iinfi  7659  fzolb  11550  sqrlem5  12728  bitsmod  13624  isfunc  14766  istps5OLD  18509  txcn  19179  trfil2  19440  eulerpartlemn  26733  bnj976  31700  bnj543  31815  bnj594  31834  bnj917  31856  dath  33273
  Copyright terms: Public domain W3C validator