Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamgm Structured version   Unicode version

Theorem 2zrngamgm 32932
Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e  |-  E  =  { z  e.  ZZ  |  E. x  e.  ZZ  z  =  ( 2  x.  x ) }
2zrngbas.r  |-  R  =  (flds  E )
Assertion
Ref Expression
2zrngamgm  |-  R  e. Mgm
Distinct variable group:    x, z
Allowed substitution hints:    R( x, z)    E( x, z)

Proof of Theorem 2zrngamgm
Dummy variables  a 
b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2461 . . . . . 6  |-  ( z  =  a  ->  (
z  =  ( 2  x.  x )  <->  a  =  ( 2  x.  x
) ) )
21rexbidv 2968 . . . . 5  |-  ( z  =  a  ->  ( E. x  e.  ZZ  z  =  ( 2  x.  x )  <->  E. x  e.  ZZ  a  =  ( 2  x.  x ) ) )
3 2zrng.e . . . . 5  |-  E  =  { z  e.  ZZ  |  E. x  e.  ZZ  z  =  ( 2  x.  x ) }
42, 3elrab2 3259 . . . 4  |-  ( a  e.  E  <->  ( a  e.  ZZ  /\  E. x  e.  ZZ  a  =  ( 2  x.  x ) ) )
5 eqeq1 2461 . . . . . 6  |-  ( z  =  b  ->  (
z  =  ( 2  x.  x )  <->  b  =  ( 2  x.  x
) ) )
65rexbidv 2968 . . . . 5  |-  ( z  =  b  ->  ( E. x  e.  ZZ  z  =  ( 2  x.  x )  <->  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )
76, 3elrab2 3259 . . . 4  |-  ( b  e.  E  <->  ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )
8 oveq2 6304 . . . . . . . . 9  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
98eqeq2d 2471 . . . . . . . 8  |-  ( x  =  y  ->  (
a  =  ( 2  x.  x )  <->  a  =  ( 2  x.  y
) ) )
109cbvrexv 3085 . . . . . . 7  |-  ( E. x  e.  ZZ  a  =  ( 2  x.  x )  <->  E. y  e.  ZZ  a  =  ( 2  x.  y ) )
11 zaddcl 10925 . . . . . . . . . . . . 13  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
1211ancoms 453 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
1312adantr 465 . . . . . . . . . . 11  |-  ( ( ( b  e.  ZZ  /\  a  e.  ZZ )  /\  ( E. x  e.  ZZ  b  =  ( 2  x.  x )  /\  E. y  e.  ZZ  a  =  ( 2  x.  y ) ) )  ->  (
a  +  b )  e.  ZZ )
14 simpl 457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ZZ  /\  a  =  ( 2  x.  y ) )  ->  y  e.  ZZ )
15 simpl 457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  ->  x  e.  ZZ )
16 zaddcl 10925 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  +  x
)  e.  ZZ )
1714, 15, 16syl2anr 478 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y
) ) )  -> 
( y  +  x
)  e.  ZZ )
1817adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  -> 
( y  +  x
)  e.  ZZ )
19 oveq2 6304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( y  +  x )  ->  (
2  x.  z )  =  ( 2  x.  ( y  +  x
) ) )
2019eqeq2d 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( y  +  x )  ->  (
( 2  x.  (
y  +  x ) )  =  ( 2  x.  z )  <->  ( 2  x.  ( y  +  x ) )  =  ( 2  x.  (
y  +  x ) ) ) )
2120adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  /\  z  =  ( y  +  x ) )  -> 
( ( 2  x.  ( y  +  x
) )  =  ( 2  x.  z )  <-> 
( 2  x.  (
y  +  x ) )  =  ( 2  x.  ( y  +  x ) ) ) )
22 eqidd 2458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  -> 
( 2  x.  (
y  +  x ) )  =  ( 2  x.  ( y  +  x ) ) )
2318, 21, 22rspcedvd 3215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  ->  E. z  e.  ZZ  ( 2  x.  (
y  +  x ) )  =  ( 2  x.  z ) )
24 simpr 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  ZZ  /\  a  =  ( 2  x.  y ) )  ->  a  =  ( 2  x.  y ) )
25 simpr 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  ->  b  =  ( 2  x.  x ) )
2624, 25oveqan12rd 6316 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y
) ) )  -> 
( a  +  b )  =  ( ( 2  x.  y )  +  ( 2  x.  x ) ) )
2726adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  -> 
( a  +  b )  =  ( ( 2  x.  y )  +  ( 2  x.  x ) ) )
28 2cnd 10629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y
) ) )  -> 
2  e.  CC )
29 zcn 10890 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ZZ  ->  y  e.  CC )
3029adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ZZ  /\  a  =  ( 2  x.  y ) )  ->  y  e.  CC )
3130adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y
) ) )  -> 
y  e.  CC )
32 zcn 10890 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  ZZ  ->  x  e.  CC )
3332adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  ->  x  e.  CC )
3433adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y
) ) )  ->  x  e.  CC )
3528, 31, 34adddid 9637 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y
) ) )  -> 
( 2  x.  (
y  +  x ) )  =  ( ( 2  x.  y )  +  ( 2  x.  x ) ) )
3635adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  -> 
( 2  x.  (
y  +  x ) )  =  ( ( 2  x.  y )  +  ( 2  x.  x ) ) )
3727, 36eqtr4d 2501 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  -> 
( a  +  b )  =  ( 2  x.  ( y  +  x ) ) )
3837eqeq1d 2459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  -> 
( ( a  +  b )  =  ( 2  x.  z )  <-> 
( 2  x.  (
y  +  x ) )  =  ( 2  x.  z ) ) )
3938rexbidv 2968 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  -> 
( E. z  e.  ZZ  ( a  +  b )  =  ( 2  x.  z )  <->  E. z  e.  ZZ  ( 2  x.  (
y  +  x ) )  =  ( 2  x.  z ) ) )
4023, 39mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x
) )  /\  (
y  e.  ZZ  /\  a  =  ( 2  x.  y ) ) )  /\  ( b  e.  ZZ  /\  a  e.  ZZ ) )  ->  E. z  e.  ZZ  ( a  +  b )  =  ( 2  x.  z ) )
4140ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  /\  ( y  e.  ZZ  /\  a  =  ( 2  x.  y
) ) )  -> 
( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  E. z  e.  ZZ  ( a  +  b )  =  ( 2  x.  z ) ) )
4241rexlimdvaa 2950 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  b  =  ( 2  x.  x ) )  ->  ( E. y  e.  ZZ  a  =  ( 2  x.  y )  ->  ( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  E. z  e.  ZZ  ( a  +  b )  =  ( 2  x.  z ) ) ) )
4342rexlimiva 2945 . . . . . . . . . . . . . 14  |-  ( E. x  e.  ZZ  b  =  ( 2  x.  x )  ->  ( E. y  e.  ZZ  a  =  ( 2  x.  y )  -> 
( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  E. z  e.  ZZ  ( a  +  b )  =  ( 2  x.  z ) ) ) )
4443imp 429 . . . . . . . . . . . . 13  |-  ( ( E. x  e.  ZZ  b  =  ( 2  x.  x )  /\  E. y  e.  ZZ  a  =  ( 2  x.  y ) )  -> 
( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  E. z  e.  ZZ  ( a  +  b )  =  ( 2  x.  z ) ) )
45 oveq2 6304 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
2  x.  x )  =  ( 2  x.  z ) )
4645eqeq2d 2471 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( a  +  b )  =  ( 2  x.  x )  <->  ( a  +  b )  =  ( 2  x.  z
) ) )
4746cbvrexv 3085 . . . . . . . . . . . . 13  |-  ( E. x  e.  ZZ  (
a  +  b )  =  ( 2  x.  x )  <->  E. z  e.  ZZ  ( a  +  b )  =  ( 2  x.  z ) )
4844, 47syl6ibr 227 . . . . . . . . . . . 12  |-  ( ( E. x  e.  ZZ  b  =  ( 2  x.  x )  /\  E. y  e.  ZZ  a  =  ( 2  x.  y ) )  -> 
( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  E. x  e.  ZZ  ( a  +  b )  =  ( 2  x.  x ) ) )
4948impcom 430 . . . . . . . . . . 11  |-  ( ( ( b  e.  ZZ  /\  a  e.  ZZ )  /\  ( E. x  e.  ZZ  b  =  ( 2  x.  x )  /\  E. y  e.  ZZ  a  =  ( 2  x.  y ) ) )  ->  E. x  e.  ZZ  ( a  +  b )  =  ( 2  x.  x ) )
50 eqeq1 2461 . . . . . . . . . . . . 13  |-  ( z  =  ( a  +  b )  ->  (
z  =  ( 2  x.  x )  <->  ( a  +  b )  =  ( 2  x.  x
) ) )
5150rexbidv 2968 . . . . . . . . . . . 12  |-  ( z  =  ( a  +  b )  ->  ( E. x  e.  ZZ  z  =  ( 2  x.  x )  <->  E. x  e.  ZZ  ( a  +  b )  =  ( 2  x.  x ) ) )
5251, 3elrab2 3259 . . . . . . . . . . 11  |-  ( ( a  +  b )  e.  E  <->  ( (
a  +  b )  e.  ZZ  /\  E. x  e.  ZZ  (
a  +  b )  =  ( 2  x.  x ) ) )
5313, 49, 52sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( b  e.  ZZ  /\  a  e.  ZZ )  /\  ( E. x  e.  ZZ  b  =  ( 2  x.  x )  /\  E. y  e.  ZZ  a  =  ( 2  x.  y ) ) )  ->  (
a  +  b )  e.  E )
5453exp32 605 . . . . . . . . 9  |-  ( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  ( E. x  e.  ZZ  b  =  ( 2  x.  x )  ->  ( E. y  e.  ZZ  a  =  ( 2  x.  y )  ->  ( a  +  b )  e.  E
) ) )
5554impancom 440 . . . . . . . 8  |-  ( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  -> 
( a  e.  ZZ  ->  ( E. y  e.  ZZ  a  =  ( 2  x.  y )  ->  ( a  +  b )  e.  E
) ) )
5655com13 80 . . . . . . 7  |-  ( E. y  e.  ZZ  a  =  ( 2  x.  y )  ->  (
a  e.  ZZ  ->  ( ( b  e.  ZZ  /\ 
E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  ( a  +  b )  e.  E
) ) )
5710, 56sylbi 195 . . . . . 6  |-  ( E. x  e.  ZZ  a  =  ( 2  x.  x )  ->  (
a  e.  ZZ  ->  ( ( b  e.  ZZ  /\ 
E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  ( a  +  b )  e.  E
) ) )
5857impcom 430 . . . . 5  |-  ( ( a  e.  ZZ  /\  E. x  e.  ZZ  a  =  ( 2  x.  x ) )  -> 
( ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) )  ->  ( a  +  b )  e.  E ) )
5958imp 429 . . . 4  |-  ( ( ( a  e.  ZZ  /\ 
E. x  e.  ZZ  a  =  ( 2  x.  x ) )  /\  ( b  e.  ZZ  /\  E. x  e.  ZZ  b  =  ( 2  x.  x ) ) )  ->  (
a  +  b )  e.  E )
604, 7, 59syl2anb 479 . . 3  |-  ( ( a  e.  E  /\  b  e.  E )  ->  ( a  +  b )  e.  E )
6160rgen2a 2884 . 2  |-  A. a  e.  E  A. b  e.  E  ( a  +  b )  e.  E
62 0z 10896 . . . . 5  |-  0  e.  ZZ
63 2cn 10627 . . . . . 6  |-  2  e.  CC
64 0zd 10897 . . . . . . 7  |-  ( 2  e.  CC  ->  0  e.  ZZ )
65 oveq2 6304 . . . . . . . . 9  |-  ( x  =  0  ->  (
2  x.  x )  =  ( 2  x.  0 ) )
6665eqeq2d 2471 . . . . . . . 8  |-  ( x  =  0  ->  (
0  =  ( 2  x.  x )  <->  0  =  ( 2  x.  0 ) ) )
6766adantl 466 . . . . . . 7  |-  ( ( 2  e.  CC  /\  x  =  0 )  ->  ( 0  =  ( 2  x.  x
)  <->  0  =  ( 2  x.  0 ) ) )
68 mul01 9776 . . . . . . . 8  |-  ( 2  e.  CC  ->  (
2  x.  0 )  =  0 )
6968eqcomd 2465 . . . . . . 7  |-  ( 2  e.  CC  ->  0  =  ( 2  x.  0 ) )
7064, 67, 69rspcedvd 3215 . . . . . 6  |-  ( 2  e.  CC  ->  E. x  e.  ZZ  0  =  ( 2  x.  x ) )
7163, 70ax-mp 5 . . . . 5  |-  E. x  e.  ZZ  0  =  ( 2  x.  x )
72 eqeq1 2461 . . . . . . 7  |-  ( z  =  0  ->  (
z  =  ( 2  x.  x )  <->  0  =  ( 2  x.  x
) ) )
7372rexbidv 2968 . . . . . 6  |-  ( z  =  0  ->  ( E. x  e.  ZZ  z  =  ( 2  x.  x )  <->  E. x  e.  ZZ  0  =  ( 2  x.  x ) ) )
7473elrab 3257 . . . . 5  |-  ( 0  e.  { z  e.  ZZ  |  E. x  e.  ZZ  z  =  ( 2  x.  x ) }  <->  ( 0  e.  ZZ  /\  E. x  e.  ZZ  0  =  ( 2  x.  x ) ) )
7562, 71, 74mpbir2an 920 . . . 4  |-  0  e.  { z  e.  ZZ  |  E. x  e.  ZZ  z  =  ( 2  x.  x ) }
7675, 3eleqtrri 2544 . . 3  |-  0  e.  E
77 2zrngbas.r . . . . 5  |-  R  =  (flds  E )
783, 772zrngbas 32929 . . . 4  |-  E  =  ( Base `  R
)
793, 772zrngadd 32930 . . . 4  |-  +  =  ( +g  `  R )
8078, 79ismgmn0 16092 . . 3  |-  ( 0  e.  E  ->  ( R  e. Mgm  <->  A. a  e.  E  A. b  e.  E  ( a  +  b )  e.  E ) )
8176, 80ax-mp 5 . 2  |-  ( R  e. Mgm 
<-> 
A. a  e.  E  A. b  e.  E  ( a  +  b )  e.  E )
8261, 81mpbir 209 1  |-  R  e. Mgm
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811  (class class class)co 6296   CCcc 9507   0cc0 9509    + caddc 9512    x. cmul 9514   2c2 10606   ZZcz 10885   ↾s cress 14736  Mgmcmgm 16088  ℂfldccnfld 18638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-addf 9588
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-struct 14737  df-ndx 14738  df-slot 14739  df-base 14740  df-sets 14741  df-ress 14742  df-plusg 14816  df-mulr 14817  df-starv 14818  df-tset 14822  df-ple 14823  df-ds 14825  df-unif 14826  df-mgm 16090  df-cnfld 18639
This theorem is referenced by:  2zrngasgrp  32933
  Copyright terms: Public domain W3C validator