Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2wlkonot Structured version   Unicode version

Theorem 2wlkonot 30309
Description: The set of walks of length 2 between two vertices (in a graph) as ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
2wlkonot  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V 2WalksOnOt  E ) B )  =  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
Distinct variable groups:    t, E, f, p    t, V, f, p    A, f, p, t    B, f, p, t
Allowed substitution hints:    X( t, f, p)    Y( t, f, p)

Proof of Theorem 2wlkonot
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2wlkonot 30307 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V 2WalksOnOt  E )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
21adantr 462 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( V 2WalksOnOt  E )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
32oveqd 6107 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V 2WalksOnOt  E ) B )  =  ( A ( a  e.  V , 
b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) B ) )
4 simprl 750 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  A  e.  V )
5 simprr 751 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  B  e.  V )
6 xpexg 6506 . . . . . . 7  |-  ( ( V  e.  X  /\  V  e.  X )  ->  ( V  X.  V
)  e.  _V )
76anidms 640 . . . . . 6  |-  ( V  e.  X  ->  ( V  X.  V )  e. 
_V )
8 xpexg 6506 . . . . . 6  |-  ( ( ( V  X.  V
)  e.  _V  /\  V  e.  X )  ->  ( ( V  X.  V )  X.  V
)  e.  _V )
97, 8mpancom 664 . . . . 5  |-  ( V  e.  X  ->  (
( V  X.  V
)  X.  V )  e.  _V )
109ad2antrr 720 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( ( V  X.  V )  X.  V
)  e.  _V )
11 rabexg 4439 . . . 4  |-  ( ( ( V  X.  V
)  X.  V )  e.  _V  ->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  B ) ) }  e.  _V )
1210, 11syl 16 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) }  e.  _V )
13 oveq12 6099 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a ( V WalkOn  E ) b )  =  ( A ( V WalkOn  E ) B ) )
1413breqd 4300 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( f ( a ( V WalkOn  E ) b ) p  <->  f ( A ( V WalkOn  E
) B ) p ) )
15 eqeq2 2450 . . . . . . . . 9  |-  ( a  =  A  ->  (
( 1st `  ( 1st `  t ) )  =  a  <->  ( 1st `  ( 1st `  t
) )  =  A ) )
1615adantr 462 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( 1st `  ( 1st `  t ) )  =  a  <->  ( 1st `  ( 1st `  t
) )  =  A ) )
17 eqeq2 2450 . . . . . . . . 9  |-  ( b  =  B  ->  (
( 2nd `  t
)  =  b  <->  ( 2nd `  t )  =  B ) )
1817adantl 463 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( 2nd `  t
)  =  b  <->  ( 2nd `  t )  =  B ) )
1916, 183anbi13d 1286 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b )  <->  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  B ) ) )
2014, 193anbi13d 1286 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) )  <->  ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) ) )
21202exbidv 1687 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) )  <->  E. f E. p
( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) ) )
2221rabbidv 2962 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) }  =  {
t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
23 eqid 2441 . . . 4  |-  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b ) ) } )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b ) ) } )
2422, 23ovmpt2ga 6219 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) }  e.  _V )  ->  ( A ( a  e.  V , 
b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) B )  =  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  B ) ) } )
254, 5, 12, 24syl3anc 1213 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b ) ) } ) B )  =  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
263, 25eqtrd 2473 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V 2WalksOnOt  E ) B )  =  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761   {crab 2717   _Vcvv 2970   class class class wbr 4289    X. cxp 4834   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   1stc1st 6574   2ndc2nd 6575   1c1 9279   2c2 10367   #chash 12099   WalkOn cwlkon 23344   2WalksOnOt c2wlkonot 30299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-2wlkonot 30302
This theorem is referenced by:  el2wlkonot  30313  2wlkonot3v  30319  2pthwlkonot  30329
  Copyright terms: Public domain W3C validator