MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkonot Structured version   Unicode version

Theorem 2wlkonot 25294
Description: The set of walks of length 2 between two vertices (in a graph) as ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
2wlkonot  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V 2WalksOnOt  E ) B )  =  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
Distinct variable groups:    t, E, f, p    t, V, f, p    A, f, p, t    B, f, p, t
Allowed substitution hints:    X( t, f, p)    Y( t, f, p)

Proof of Theorem 2wlkonot
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2wlkonot 25292 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V 2WalksOnOt  E )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
21adantr 465 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( V 2WalksOnOt  E )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) )
32oveqd 6297 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V 2WalksOnOt  E ) B )  =  ( A ( a  e.  V , 
b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) B ) )
4 simprl 758 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  A  e.  V )
5 simprr 760 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  B  e.  V )
6 3xpexg 6587 . . . . 5  |-  ( V  e.  X  ->  (
( V  X.  V
)  X.  V )  e.  _V )
76ad2antrr 726 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( ( V  X.  V )  X.  V
)  e.  _V )
8 rabexg 4546 . . . 4  |-  ( ( ( V  X.  V
)  X.  V )  e.  _V  ->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  B ) ) }  e.  _V )
97, 8syl 17 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) }  e.  _V )
10 oveq12 6289 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a ( V WalkOn  E ) b )  =  ( A ( V WalkOn  E ) B ) )
1110breqd 4408 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( f ( a ( V WalkOn  E ) b ) p  <->  f ( A ( V WalkOn  E
) B ) p ) )
12 eqeq2 2419 . . . . . . . . 9  |-  ( a  =  A  ->  (
( 1st `  ( 1st `  t ) )  =  a  <->  ( 1st `  ( 1st `  t
) )  =  A ) )
1312adantr 465 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( 1st `  ( 1st `  t ) )  =  a  <->  ( 1st `  ( 1st `  t
) )  =  A ) )
14 eqeq2 2419 . . . . . . . . 9  |-  ( b  =  B  ->  (
( 2nd `  t
)  =  b  <->  ( 2nd `  t )  =  B ) )
1514adantl 466 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( 2nd `  t
)  =  b  <->  ( 2nd `  t )  =  B ) )
1613, 153anbi13d 1305 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b )  <->  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  B ) ) )
1711, 163anbi13d 1305 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) )  <->  ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) ) )
18172exbidv 1739 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) )  <->  E. f E. p
( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) ) )
1918rabbidv 3053 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E
) b ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) }  =  {
t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
20 eqid 2404 . . . 4  |-  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b ) ) } )  =  ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b ) ) } )
2119, 20ovmpt2ga 6415 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) }  e.  _V )  ->  ( A ( a  e.  V , 
b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  a  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  b ) ) } ) B )  =  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E ) B ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  B ) ) } )
224, 5, 9, 21syl3anc 1232 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( a  e.  V ,  b  e.  V  |->  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p ( f ( a ( V WalkOn  E ) b ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  a  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  b ) ) } ) B )  =  { t  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
233, 22eqtrd 2445 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V 2WalksOnOt  E ) B )  =  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V WalkOn  E
) B ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  B ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407   E.wex 1635    e. wcel 1844   {crab 2760   _Vcvv 3061   class class class wbr 4397    X. cxp 4823   ` cfv 5571  (class class class)co 6280    |-> cmpt2 6282   1stc1st 6784   2ndc2nd 6785   1c1 9525   2c2 10628   #chash 12454   WalkOn cwlkon 24931   2WalksOnOt c2wlkonot 25284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-2wlkonot 25287
This theorem is referenced by:  el2wlkonot  25298  2wlkonot3v  25304  2pthwlkonot  25314
  Copyright terms: Public domain W3C validator