MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2vmadivsumlem Structured version   Unicode version

Theorem 2vmadivsumlem 22769
Description: Lemma for 2vmadivsum 22770. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
2vmadivsum.1  |-  ( ph  ->  A  e.  RR+ )
2vmadivsum.2  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A
)
Assertion
Ref Expression
2vmadivsumlem  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O(1) )
Distinct variable groups:    i, m, n, x, y, A    ph, m, n, x
Allowed substitution hints:    ph( y, i)

Proof of Theorem 2vmadivsumlem
StepHypRef Expression
1 vmalogdivsum2 22767 . . 3  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
21a1i 11 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
3 fzfid 11787 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
4 elfznn 11470 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
54adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
6 vmacl 22436 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
75, 6syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
87, 5nndivred 10362 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
9 fzfid 11787 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
10 elfznn 11470 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
1110adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
12 vmacl 22436 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
1311, 12syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  RR )
1413, 11nndivred 10362 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  RR )
159, 14fsumrecl 13203 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  RR )
168, 15remulcld 9406 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  e.  RR )
173, 16fsumrecl 13203 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  RR )
18 elioore 11322 . . . . . . . 8  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
1918adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
20 eliooord 11347 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
2120adantl 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
2221simpld 459 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
2319, 22rplogcld 22058 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2417, 23rerpdivcld 11046 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  RR )
25 1rp 10987 . . . . . . . . 9  |-  1  e.  RR+
2625a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
27 1red 9393 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
2827, 19, 22ltled 9514 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
2919, 26, 28rpgecld 11054 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
3029relogcld 22052 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
3130rehalfcld 10563 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
3224, 31resubcld 9768 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  e.  RR )
3332recnd 9404 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  e.  CC )
3429adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
355nnrpd 11018 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3634, 35rpdivcld 11036 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
3736relogcld 22052 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
388, 37remulcld 9406 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  RR )
393, 38fsumrecl 13203 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
4039, 23rerpdivcld 11046 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  RR )
4140, 31resubcld 9768 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  RR )
4241recnd 9404 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
4317recnd 9404 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  CC )
4439recnd 9404 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
4530recnd 9404 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
4623rpne0d 11024 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
4743, 44, 45, 46divsubdird 10138 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
488recnd 9404 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
4915recnd 9404 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  CC )
5037recnd 9404 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
5148, 49, 50subdid 9792 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
5251sumeq2dv 13172 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
5316recnd 9404 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  e.  CC )
5438recnd 9404 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  CC )
553, 53, 54fsumsub 13247 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
5652, 55eqtrd 2470 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
5756oveq1d 6101 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )
5824recnd 9404 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  CC )
5940recnd 9404 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  CC )
6031recnd 9404 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
6158, 59, 60nnncan2d 9746 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
6247, 57, 613eqtr4d 2480 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )
6362mpteq2dva 4373 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) ) )
64 1red 9393 . . . . 5  |-  ( ph  ->  1  e.  RR )
653, 8fsumrecl 13203 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
6665, 23rerpdivcld 11046 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  RR )
67 2vmadivsum.1 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
6867rpred 11019 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
6968adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR )
70 ioossre 11349 . . . . . . . 8  |-  ( 1 (,) +oo )  C_  RR
71 1cnd 9394 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
72 o1const 13089 . . . . . . . 8  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  1  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
7370, 71, 72sylancr 663 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
7466recnd 9404 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  CC )
75 1cnd 9394 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  CC )
7665recnd 9404 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
7776, 45, 45, 46divsubdird 10138 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  -  ( ( log `  x
)  /  ( log `  x ) ) ) )
7876, 45subcld 9711 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
7978, 45, 46divrecd 10102 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) )  x.  ( 1  /  ( log `  x ) ) ) )
8045, 46dividd 10097 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  ( log `  x ) )  =  1 )
8180oveq2d 6102 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  (
( log `  x
)  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
8277, 79, 813eqtr3d 2478 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
8382mpteq2dva 4373 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  -  1 ) ) )
8465, 30resubcld 9768 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  RR )
8527, 23rerpdivcld 11046 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  /  ( log `  x ) )  e.  RR )
8629ex 434 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR+ )
)
8786ssrdv 3357 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 (,) +oo )  C_  RR+ )
88 vmadivsum 22711 . . . . . . . . . . . 12  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
8988a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
9087, 89o1res2 13033 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
91 divlogrlim 22060 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0
92 rlimo1 13086 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  ~~> r  0  ->  (
x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
9391, 92mp1i 12 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
9484, 85, 90, 93o1mul2 13094 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  e.  O(1) )
9583, 94eqeltrrd 2513 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  e.  O(1) )
9674, 75, 95o1dif 13099 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) ) )
9773, 96mpbird 232 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1) )
9868recnd 9404 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
99 o1const 13089 . . . . . . 7  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  A  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  A )  e.  O(1) )
10070, 98, 99sylancr 663 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  A )  e.  O(1) )
10166, 69, 97, 100o1mul2 13094 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )  e.  O(1) )
10266, 69remulcld 9406 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
)  e.  RR )
10315, 37resubcld 9768 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) )  e.  RR )
1048, 103remulcld 9406 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  RR )
1053, 104fsumrecl 13203 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
106105recnd 9404 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  CC )
107106, 45, 46divcld 10099 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  e.  CC )
108106abscld 12914 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  e.  RR )
10965, 69remulcld 9406 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  A
)  e.  RR )
110104recnd 9404 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
111110abscld 12914 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  e.  RR )
1123, 111fsumrecl 13203 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  RR )
1133, 110fsumabs 13256 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) ) )
11469adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  RR )
1158, 114remulcld 9406 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  A
)  e.  RR )
116103recnd 9404 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) )  e.  CC )
11748, 116absmuld 12932 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  =  ( ( abs `  ( (Λ `  n
)  /  n ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) ) )
118 vmage0 22439 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
1195, 118syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
1207, 35, 119divge0d 11055 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  /  n ) )
1218, 120absidd 12901 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (Λ `  n
)  /  n ) )  =  ( (Λ `  n )  /  n
) )
122121oveq1d 6101 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (Λ `  n
)  /  n ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  =  ( ( (Λ `  n )  /  n
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) ) )
123117, 122eqtrd 2470 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  =  ( ( (Λ `  n )  /  n
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) ) )
124116abscld 12914 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
12536rpred 11019 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
1265nncnd 10330 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
127126mulid2d 9396 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
128 fznnfl 11693 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
12919, 128syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
130129simplbda 624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
131127, 130eqbrtrd 4307 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
132 1red 9393 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
13319adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
134132, 133, 35lemuldivd 11064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
135131, 134mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
136 1re 9377 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
137 elicopnf 11377 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR  ->  (
( x  /  n
)  e.  ( 1 [,) +oo )  <->  ( (
x  /  n )  e.  RR  /\  1  <_  ( x  /  n
) ) ) )
138136, 137ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( x  /  n )  e.  ( 1 [,) +oo )  <->  ( ( x  /  n )  e.  RR  /\  1  <_ 
( x  /  n
) ) )
139125, 135, 138sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  ( 1 [,) +oo )
)
140 2vmadivsum.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A
)
141140ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A
)
142 fveq2 5686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  m  ->  (Λ `  i )  =  (Λ `  m ) )
143 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  m  ->  i  =  m )
144142, 143oveq12d 6104 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  m  ->  (
(Λ `  i )  / 
i )  =  ( (Λ `  m )  /  m ) )
145144cbvsumv 13165 . . . . . . . . . . . . . . . . . . 19  |-  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  /  m )
146 fveq2 5686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( x  /  n )  ->  ( |_ `  y )  =  ( |_ `  (
x  /  n ) ) )
147146oveq2d 6102 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  (
1 ... ( |_ `  y ) )  =  ( 1 ... ( |_ `  ( x  /  n ) ) ) )
148147sumeq1d 13170 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( x  /  n )  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  /  m )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )
149145, 148syl5eq 2482 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  /  n )  ->  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )
150 fveq2 5686 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  /  n )  ->  ( log `  y )  =  ( log `  (
x  /  n ) ) )
151149, 150oveq12d 6104 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  /  n )  ->  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) ) )
152151fveq2d 5690 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  /  n )  ->  ( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
)  /  i )  -  ( log `  y
) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )
153152breq1d 4297 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  /  n )  ->  (
( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A  <->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) ) )  <_  A ) )
154153rspcv 3064 . . . . . . . . . . . . . 14  |-  ( ( x  /  n )  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  <_  A )
)
155139, 141, 154sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_  A )
156124, 114, 8, 120, 155lemul2ad 10265 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  ( ( (Λ `  n )  /  n
)  x.  A ) )
157123, 156eqbrtrd 4307 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  ( ( (Λ `  n )  /  n
)  x.  A ) )
1583, 111, 115, 157fsumle 13254 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  A ) )
15998adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  CC )
1603, 159, 48fsummulc1 13244 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  A
)  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  A ) )
161158, 160breqtrrd 4313 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  A
) )
162108, 112, 109, 113, 161letrd 9520 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  A ) )
163108, 109, 23, 162lediv1dd 11073 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( log `  x ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  A )  /  ( log `  x
) ) )
164106, 45, 46absdivd 12933 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) ) )
16523rpge0d 11023 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( log `  x
) )
16630, 165absidd 12901 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( log `  x
) )  =  ( log `  x ) )
167166oveq2d 6102 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( log `  x ) ) )
168164, 167eqtrd 2470 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( log `  x ) ) )
1693, 8, 120fsumge0 13250 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n ) )
17065, 23, 169divge0d 11055 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )
17167adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR+ )
172171rpge0d 11023 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  A )
17366, 69, 170, 172mulge0d 9908 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )
174102, 173absidd 12901 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  x.  A ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )
17576, 159, 45, 46div23d 10136 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  A )  / 
( log `  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )
176174, 175eqtr4d 2473 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  x.  A ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  A )  / 
( log `  x
) ) )
177163, 168, 1763brtr4d 4317 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  <_ 
( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) ) )
178177adantrr 716 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x
) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  <_ 
( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) ) )
17964, 101, 102, 107, 178o1le 13122 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  e.  O(1) )
18063, 179eqeltrrd 2513 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
18133, 42, 180o1dif 13099 . 2  |-  ( ph  ->  ( ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) ) )
1822, 181mpbird 232 1  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710    C_ wss 3323   class class class wbr 4287    e. cmpt 4345   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    x. cmul 9279   +oocpnf 9407    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   2c2 10363   RR+crp 10983   (,)cioo 11292   [,)cico 11294   ...cfz 11429   |_cfl 11632   abscabs 12715    ~~> r crli 12955   O(1)co1 12956   sum_csu 13155   logclog 21986  Λcvma 22409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-o1 12960  df-lo1 12961  df-sum 13156  df-ef 13345  df-e 13346  df-sin 13347  df-cos 13348  df-pi 13350  df-dvds 13528  df-gcd 13683  df-prm 13756  df-pc 13896  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-cmp 18970  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322  df-log 21988  df-cxp 21989  df-em 22366  df-cht 22414  df-vma 22415  df-chp 22416  df-ppi 22417
This theorem is referenced by:  2vmadivsum  22770
  Copyright terms: Public domain W3C validator