MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2vmadivsumlem Structured version   Unicode version

Theorem 2vmadivsumlem 22921
Description: Lemma for 2vmadivsum 22922. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
2vmadivsum.1  |-  ( ph  ->  A  e.  RR+ )
2vmadivsum.2  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A
)
Assertion
Ref Expression
2vmadivsumlem  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O(1) )
Distinct variable groups:    i, m, n, x, y, A    ph, m, n, x
Allowed substitution hints:    ph( y, i)

Proof of Theorem 2vmadivsumlem
StepHypRef Expression
1 vmalogdivsum2 22919 . . 3  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
21a1i 11 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
3 fzfid 11911 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
4 elfznn 11594 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
54adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
6 vmacl 22588 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
75, 6syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
87, 5nndivred 10480 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
9 fzfid 11911 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
10 elfznn 11594 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
1110adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
12 vmacl 22588 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
1311, 12syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  RR )
1413, 11nndivred 10480 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  RR )
159, 14fsumrecl 13328 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  RR )
168, 15remulcld 9524 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  e.  RR )
173, 16fsumrecl 13328 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  RR )
18 elioore 11440 . . . . . . . 8  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
1918adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
20 eliooord 11465 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
2120adantl 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
2221simpld 459 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
2319, 22rplogcld 22210 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2417, 23rerpdivcld 11164 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  RR )
25 1rp 11105 . . . . . . . . 9  |-  1  e.  RR+
2625a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
27 1red 9511 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
2827, 19, 22ltled 9632 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
2919, 26, 28rpgecld 11172 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
3029relogcld 22204 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
3130rehalfcld 10681 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
3224, 31resubcld 9886 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  e.  RR )
3332recnd 9522 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  e.  CC )
3429adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
355nnrpd 11136 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3634, 35rpdivcld 11154 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
3736relogcld 22204 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
388, 37remulcld 9524 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  RR )
393, 38fsumrecl 13328 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
4039, 23rerpdivcld 11164 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  RR )
4140, 31resubcld 9886 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  RR )
4241recnd 9522 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
4317recnd 9522 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  CC )
4439recnd 9522 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
4530recnd 9522 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
4623rpne0d 11142 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
4743, 44, 45, 46divsubdird 10256 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
488recnd 9522 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
4915recnd 9522 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  CC )
5037recnd 9522 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
5148, 49, 50subdid 9910 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
5251sumeq2dv 13297 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
5316recnd 9522 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  e.  CC )
5438recnd 9522 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  CC )
553, 53, 54fsumsub 13372 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
5652, 55eqtrd 2495 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
5756oveq1d 6214 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )
5824recnd 9522 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  CC )
5940recnd 9522 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  CC )
6031recnd 9522 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
6158, 59, 60nnncan2d 9864 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
6247, 57, 613eqtr4d 2505 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )
6362mpteq2dva 4485 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) ) )
64 1red 9511 . . . . 5  |-  ( ph  ->  1  e.  RR )
653, 8fsumrecl 13328 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
6665, 23rerpdivcld 11164 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  RR )
67 2vmadivsum.1 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
6867rpred 11137 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
6968adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR )
70 ioossre 11467 . . . . . . . 8  |-  ( 1 (,) +oo )  C_  RR
71 1cnd 9512 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
72 o1const 13214 . . . . . . . 8  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  1  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
7370, 71, 72sylancr 663 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
7466recnd 9522 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  CC )
75 1cnd 9512 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  CC )
7665recnd 9522 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
7776, 45, 45, 46divsubdird 10256 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  -  ( ( log `  x
)  /  ( log `  x ) ) ) )
7876, 45subcld 9829 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
7978, 45, 46divrecd 10220 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) )  x.  ( 1  /  ( log `  x ) ) ) )
8045, 46dividd 10215 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  ( log `  x ) )  =  1 )
8180oveq2d 6215 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  (
( log `  x
)  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
8277, 79, 813eqtr3d 2503 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
8382mpteq2dva 4485 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  -  1 ) ) )
8465, 30resubcld 9886 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  RR )
8527, 23rerpdivcld 11164 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  /  ( log `  x ) )  e.  RR )
8629ex 434 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR+ )
)
8786ssrdv 3469 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 (,) +oo )  C_  RR+ )
88 vmadivsum 22863 . . . . . . . . . . . 12  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
8988a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
9087, 89o1res2 13158 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
91 divlogrlim 22212 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0
92 rlimo1 13211 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  ~~> r  0  ->  (
x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
9391, 92mp1i 12 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
9484, 85, 90, 93o1mul2 13219 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  e.  O(1) )
9583, 94eqeltrrd 2543 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  e.  O(1) )
9674, 75, 95o1dif 13224 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) ) )
9773, 96mpbird 232 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1) )
9868recnd 9522 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
99 o1const 13214 . . . . . . 7  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  A  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  A )  e.  O(1) )
10070, 98, 99sylancr 663 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  A )  e.  O(1) )
10166, 69, 97, 100o1mul2 13219 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )  e.  O(1) )
10266, 69remulcld 9524 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
)  e.  RR )
10315, 37resubcld 9886 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) )  e.  RR )
1048, 103remulcld 9524 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  RR )
1053, 104fsumrecl 13328 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
106105recnd 9522 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  CC )
107106, 45, 46divcld 10217 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  e.  CC )
108106abscld 13039 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  e.  RR )
10965, 69remulcld 9524 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  A
)  e.  RR )
110104recnd 9522 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
111110abscld 13039 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  e.  RR )
1123, 111fsumrecl 13328 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  RR )
1133, 110fsumabs 13381 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) ) )
11469adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  RR )
1158, 114remulcld 9524 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  A
)  e.  RR )
116103recnd 9522 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) )  e.  CC )
11748, 116absmuld 13057 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  =  ( ( abs `  ( (Λ `  n
)  /  n ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) ) )
118 vmage0 22591 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
1195, 118syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
1207, 35, 119divge0d 11173 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  /  n ) )
1218, 120absidd 13026 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (Λ `  n
)  /  n ) )  =  ( (Λ `  n )  /  n
) )
122121oveq1d 6214 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (Λ `  n
)  /  n ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  =  ( ( (Λ `  n )  /  n
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) ) )
123117, 122eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  =  ( ( (Λ `  n )  /  n
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) ) )
124116abscld 13039 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
12536rpred 11137 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
1265nncnd 10448 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
127126mulid2d 9514 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
128 fznnfl 11817 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
12919, 128syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
130129simplbda 624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
131127, 130eqbrtrd 4419 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
132 1red 9511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
13319adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
134132, 133, 35lemuldivd 11182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
135131, 134mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
136 1re 9495 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
137 elicopnf 11501 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR  ->  (
( x  /  n
)  e.  ( 1 [,) +oo )  <->  ( (
x  /  n )  e.  RR  /\  1  <_  ( x  /  n
) ) ) )
138136, 137ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( x  /  n )  e.  ( 1 [,) +oo )  <->  ( ( x  /  n )  e.  RR  /\  1  <_ 
( x  /  n
) ) )
139125, 135, 138sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  ( 1 [,) +oo )
)
140 2vmadivsum.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A
)
141140ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A
)
142 fveq2 5798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  m  ->  (Λ `  i )  =  (Λ `  m ) )
143 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  m  ->  i  =  m )
144142, 143oveq12d 6217 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  m  ->  (
(Λ `  i )  / 
i )  =  ( (Λ `  m )  /  m ) )
145144cbvsumv 13290 . . . . . . . . . . . . . . . . . . 19  |-  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  /  m )
146 fveq2 5798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( x  /  n )  ->  ( |_ `  y )  =  ( |_ `  (
x  /  n ) ) )
147146oveq2d 6215 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  (
1 ... ( |_ `  y ) )  =  ( 1 ... ( |_ `  ( x  /  n ) ) ) )
148147sumeq1d 13295 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( x  /  n )  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  /  m )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )
149145, 148syl5eq 2507 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  /  n )  ->  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )
150 fveq2 5798 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  /  n )  ->  ( log `  y )  =  ( log `  (
x  /  n ) ) )
151149, 150oveq12d 6217 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  /  n )  ->  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) ) )
152151fveq2d 5802 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  /  n )  ->  ( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
)  /  i )  -  ( log `  y
) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )
153152breq1d 4409 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  /  n )  ->  (
( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A  <->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  -  ( log `  ( x  /  n
) ) ) )  <_  A ) )
154153rspcv 3173 . . . . . . . . . . . . . 14  |-  ( ( x  /  n )  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i )  /  i )  -  ( log `  y ) ) )  <_  A  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) )  <_  A )
)
155139, 141, 154sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_  A )
156124, 114, 8, 120, 155lemul2ad 10383 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  ( ( (Λ `  n )  /  n
)  x.  A ) )
157123, 156eqbrtrd 4419 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  ( ( (Λ `  n )  /  n
)  x.  A ) )
1583, 111, 115, 157fsumle 13379 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  A ) )
15998adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  CC )
1603, 159, 48fsummulc1 13369 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  A
)  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  A ) )
161158, 160breqtrrd 4425 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  A
) )
162108, 112, 109, 113, 161letrd 9638 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  A ) )
163108, 109, 23, 162lediv1dd 11191 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( log `  x ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  A )  /  ( log `  x
) ) )
164106, 45, 46absdivd 13058 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) ) )
16523rpge0d 11141 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( log `  x
) )
16630, 165absidd 13026 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( log `  x
) )  =  ( log `  x ) )
167166oveq2d 6215 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( log `  x ) ) )
168164, 167eqtrd 2495 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  /  ( log `  x ) ) )
1693, 8, 120fsumge0 13375 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n ) )
17065, 23, 169divge0d 11173 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )
17167adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR+ )
172171rpge0d 11141 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  A )
17366, 69, 170, 172mulge0d 10026 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )
174102, 173absidd 13026 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  x.  A ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )
17576, 159, 45, 46div23d 10254 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  A )  / 
( log `  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) )
176174, 175eqtr4d 2498 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  x.  A ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  A )  / 
( log `  x
) ) )
177163, 168, 1763brtr4d 4429 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  <_ 
( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) ) )
178177adantrr 716 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x
) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  <_ 
( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  x.  A
) ) )
17964, 101, 102, 107, 178o1le 13247 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  -  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) ) )  e.  O(1) )
18063, 179eqeltrrd 2543 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
18133, 42, 180o1dif 13224 . 2  |-  ( ph  ->  ( ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) ) )
1822, 181mpbird 232 1  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798    C_ wss 3435   class class class wbr 4399    |-> cmpt 4457   ` cfv 5525  (class class class)co 6199   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    x. cmul 9397   +oocpnf 9525    < clt 9528    <_ cle 9529    - cmin 9705    / cdiv 10103   NNcn 10432   2c2 10481   RR+crp 11101   (,)cioo 11410   [,)cico 11412   ...cfz 11553   |_cfl 11756   abscabs 12840    ~~> r crli 13080   O(1)co1 13081   sum_csu 13280   logclog 22138  Λcvma 22561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-ioc 11415  df-ico 11416  df-icc 11417  df-fz 11554  df-fzo 11665  df-fl 11758  df-mod 11825  df-seq 11923  df-exp 11982  df-fac 12168  df-bc 12195  df-hash 12220  df-shft 12673  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-limsup 13066  df-clim 13083  df-rlim 13084  df-o1 13085  df-lo1 13086  df-sum 13281  df-ef 13470  df-e 13471  df-sin 13472  df-cos 13473  df-pi 13475  df-dvds 13653  df-gcd 13808  df-prm 13881  df-pc 14021  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-fbas 17938  df-fg 17939  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cld 18754  df-ntr 18755  df-cls 18756  df-nei 18833  df-lp 18871  df-perf 18872  df-cn 18962  df-cnp 18963  df-haus 19050  df-cmp 19121  df-tx 19266  df-hmeo 19459  df-fil 19550  df-fm 19642  df-flim 19643  df-flf 19644  df-xms 20026  df-ms 20027  df-tms 20028  df-cncf 20585  df-limc 21473  df-dv 21474  df-log 22140  df-cxp 22141  df-em 22518  df-cht 22566  df-vma 22567  df-chp 22568  df-ppi 22569
This theorem is referenced by:  2vmadivsum  22922
  Copyright terms: Public domain W3C validator