MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2trllemH Structured version   Unicode version

Theorem 2trllemH 24681
Description: Lemma 3 for constr2trl 24728. (Contributed by Alexander van der Vekens, 31-Jan-2018.)
Hypotheses
Ref Expression
2trlX.i  |-  ( I  e.  U  /\  J  e.  W )
2trlX.f  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
Assertion
Ref Expression
2trllemH  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )

Proof of Theorem 2trllemH
StepHypRef Expression
1 c0ex 9607 . . . . . 6  |-  0  e.  _V
2 1ex 9608 . . . . . 6  |-  1  e.  _V
31, 2pm3.2i 455 . . . . 5  |-  ( 0  e.  _V  /\  1  e.  _V )
4 2trlX.i . . . . 5  |-  ( I  e.  U  /\  J  e.  W )
5 0ne1 10624 . . . . 5  |-  0  =/=  1
63, 4, 53pm3.2i 1174 . . . 4  |-  ( ( 0  e.  _V  /\  1  e.  _V )  /\  ( I  e.  U  /\  J  e.  W
)  /\  0  =/=  1 )
7 fprg 6081 . . . . 5  |-  ( ( ( 0  e.  _V  /\  1  e.  _V )  /\  ( I  e.  U  /\  J  e.  W
)  /\  0  =/=  1 )  ->  { <. 0 ,  I >. , 
<. 1 ,  J >. } : { 0 ,  1 } --> { I ,  J } )
8 2trlX.f . . . . . . . 8  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
94, 82trllemB 24680 . . . . . . 7  |-  ( 0..^ ( # `  F
) )  =  {
0 ,  1 }
109a1i 11 . . . . . 6  |-  ( ( ( 0  e.  _V  /\  1  e.  _V )  /\  ( I  e.  U  /\  J  e.  W
)  /\  0  =/=  1 )  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
1110feq2d 5724 . . . . 5  |-  ( ( ( 0  e.  _V  /\  1  e.  _V )  /\  ( I  e.  U  /\  J  e.  W
)  /\  0  =/=  1 )  ->  ( { <. 0 ,  I >. ,  <. 1 ,  J >. } : ( 0..^ ( # `  F
) ) --> { I ,  J }  <->  { <. 0 ,  I >. ,  <. 1 ,  J >. } : {
0 ,  1 } --> { I ,  J } ) )
127, 11mpbird 232 . . . 4  |-  ( ( ( 0  e.  _V  /\  1  e.  _V )  /\  ( I  e.  U  /\  J  e.  W
)  /\  0  =/=  1 )  ->  { <. 0 ,  I >. , 
<. 1 ,  J >. } : ( 0..^ ( # `  F
) ) --> { I ,  J } )
136, 12mp1i 12 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  { <. 0 ,  I >. , 
<. 1 ,  J >. } : ( 0..^ ( # `  F
) ) --> { I ,  J } )
14 2trllemF 24678 . . . . . . . . 9  |-  ( ( ( E `  I
)  =  { A ,  B }  /\  B  e.  V )  ->  I  e.  dom  E )
1514adantlr 714 . . . . . . . 8  |-  ( ( ( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  /\  B  e.  V )  ->  I  e.  dom  E
)
16 prcom 4110 . . . . . . . . . . . 12  |-  { B ,  C }  =  { C ,  B }
1716eqeq2i 2475 . . . . . . . . . . 11  |-  ( ( E `  J )  =  { B ,  C }  <->  ( E `  J )  =  { C ,  B }
)
1817biimpi 194 . . . . . . . . . 10  |-  ( ( E `  J )  =  { B ,  C }  ->  ( E `
 J )  =  { C ,  B } )
1918adantl 466 . . . . . . . . 9  |-  ( ( ( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } )  ->  ( E `  J )  =  { C ,  B } )
20 2trllemF 24678 . . . . . . . . 9  |-  ( ( ( E `  J
)  =  { C ,  B }  /\  B  e.  V )  ->  J  e.  dom  E )
2119, 20sylan 471 . . . . . . . 8  |-  ( ( ( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  /\  B  e.  V )  ->  J  e.  dom  E
)
2215, 21jca 532 . . . . . . 7  |-  ( ( ( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  /\  B  e.  V )  ->  ( I  e.  dom  E  /\  J  e.  dom  E ) )
2322expcom 435 . . . . . 6  |-  ( B  e.  V  ->  (
( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  -> 
( I  e.  dom  E  /\  J  e.  dom  E ) ) )
24233ad2ant3 1019 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V )  ->  ( ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
)  ->  ( I  e.  dom  E  /\  J  e.  dom  E ) ) )
2524imp 429 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  (
I  e.  dom  E  /\  J  e.  dom  E ) )
26 prssg 4187 . . . . 5  |-  ( ( I  e.  U  /\  J  e.  W )  ->  ( ( I  e. 
dom  E  /\  J  e. 
dom  E )  <->  { I ,  J }  C_  dom  E ) )
274, 26ax-mp 5 . . . 4  |-  ( ( I  e.  dom  E  /\  J  e.  dom  E )  <->  { I ,  J }  C_  dom  E )
2825, 27sylib 196 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  { I ,  J }  C_  dom  E )
2913, 28fssd 5746 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  { <. 0 ,  I >. , 
<. 1 ,  J >. } : ( 0..^ ( # `  F
) ) --> dom  E
)
308feq1i 5729 . 2  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  <->  { <. 0 ,  I >. ,  <. 1 ,  J >. } : ( 0..^ ( # `  F
) ) --> dom  E
)
3129, 30sylibr 212 1  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   _Vcvv 3109    C_ wss 3471   {cpr 4034   <.cop 4038   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296   0cc0 9509   1c1 9510  ..^cfzo 11821   #chash 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-hash 12409
This theorem is referenced by:  constr2wlk  24727
  Copyright terms: Public domain W3C validator