MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Structured version   Unicode version

Theorem 2sqlem2 23364
Description: Lemma for 2sq 23376. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
2sqlem2  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable groups:    x, w, y    x, A, y    x, S, y
Allowed substitution hints:    A( w)    S( w)

Proof of Theorem 2sqlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 23363 . . 3  |-  ( A  e.  S  <->  E. z  e.  ZZ[_i]  A  =  ( ( abs `  z ) ^
2 ) )
3 elgz 14301 . . . . . . 7  |-  ( z  e.  ZZ[_i]  <->  ( z  e.  CC  /\  ( Re
`  z )  e.  ZZ  /\  ( Im
`  z )  e.  ZZ ) )
43simp2bi 1012 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Re `  z )  e.  ZZ )
53simp3bi 1013 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Im `  z )  e.  ZZ )
6 gzcn 14302 . . . . . . 7  |-  ( z  e.  ZZ[_i]  ->  z  e.  CC )
76absvalsq2d 13230 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
8 oveq1 6289 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x ^ 2 )  =  ( ( Re
`  z ) ^
2 ) )
98oveq1d 6297 . . . . . . . 8  |-  ( x  =  ( Re `  z )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) )
109eqeq2d 2481 . . . . . . 7  |-  ( x  =  ( Re `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) ) )
11 oveq1 6289 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
y ^ 2 )  =  ( ( Im
`  z ) ^
2 ) )
1211oveq2d 6298 . . . . . . . 8  |-  ( y  =  ( Im `  z )  ->  (
( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
1312eqeq2d 2481 . . . . . . 7  |-  ( y  =  ( Im `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) ) )
1410, 13rspc2ev 3225 . . . . . 6  |-  ( ( ( Re `  z
)  e.  ZZ  /\  ( Im `  z )  e.  ZZ  /\  (
( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
154, 5, 7, 14syl3anc 1228 . . . . 5  |-  ( z  e.  ZZ[_i]  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( abs `  z ) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
16 eqeq1 2471 . . . . . 6  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
17162rexbidv 2980 . . . . 5  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1815, 17syl5ibrcom 222 . . . 4  |-  ( z  e.  ZZ[_i]  ->  ( A  =  ( ( abs `  z ) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1918rexlimiv 2949 . . 3  |-  ( E. z  e.  ZZ[_i]  A  =  ( ( abs `  z
) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
202, 19sylbi 195 . 2  |-  ( A  e.  S  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
21 gzreim 14309 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  ZZ[_i] )
22 zcn 10865 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 ax-icn 9547 . . . . . . . . . 10  |-  _i  e.  CC
24 zcn 10865 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
25 mulcl 9572 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
2623, 24, 25sylancr 663 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
_i  x.  y )  e.  CC )
27 addcl 9570 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( x  +  ( _i  x.  y
) )  e.  CC )
2822, 26, 27syl2an 477 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
2928absvalsq2d 13230 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 )  =  ( ( ( Re `  ( x  +  ( _i  x.  y ) ) ) ^ 2 )  +  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 ) ) )
30 zre 10864 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
31 zre 10864 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  RR )
32 crre 12904 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3330, 31, 32syl2an 477 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3433oveq1d 6297 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( x ^ 2 ) )
35 crim 12905 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3630, 31, 35syl2an 477 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3736oveq1d 6297 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( y ^ 2 ) )
3834, 37oveq12d 6300 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( Re
`  ( x  +  ( _i  x.  y
) ) ) ^
2 )  +  ( ( Im `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
3929, 38eqtr2d 2509 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
40 fveq2 5864 . . . . . . . . 9  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  ( abs `  z )  =  ( abs `  (
x  +  ( _i  x.  y ) ) ) )
4140oveq1d 6297 . . . . . . . 8  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
4241eqeq2d 2481 . . . . . . 7  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 )  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  =  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) ) )
4342rspcev 3214 . . . . . 6  |-  ( ( ( x  +  ( _i  x.  y ) )  e.  ZZ[_i]  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )  ->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4421, 39, 43syl2anc 661 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  E. z  e.  ZZ[_i]  ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4512sqlem1 23363 . . . . 5  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  S  <->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4644, 45sylibr 212 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  S )
47 eleq1 2539 . . . 4  |-  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  ( A  e.  S  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  S ) )
4846, 47syl5ibrcom 222 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S
) )
4948rexlimivv 2960 . 2  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S )
5020, 49impbii 188 1  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815    |-> cmpt 4505   ran crn 5000   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   _ici 9490    + caddc 9491    x. cmul 9493   2c2 10581   ZZcz 10860   ^cexp 12129   Recre 12887   Imcim 12888   abscabs 13024   ZZ[_i]cgz 14299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-seq 12071  df-exp 12130  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-gz 14300
This theorem is referenced by:  2sqlem5  23368  2sqlem7  23370  2sq  23376
  Copyright terms: Public domain W3C validator