MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Unicode version

Theorem 2sqlem2 21101
Description: Lemma for 2sq 21113. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
2sqlem2  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable groups:    x, w, y    x, A, y    x, S, y
Allowed substitution hints:    A( w)    S( w)

Proof of Theorem 2sqlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 21100 . . 3  |-  ( A  e.  S  <->  E. z  e.  ZZ [ _i ]  A  =  ( ( abs `  z ) ^
2 ) )
3 elgz 13254 . . . . . . 7  |-  ( z  e.  ZZ [ _i ] 
<->  ( z  e.  CC  /\  ( Re `  z
)  e.  ZZ  /\  ( Im `  z )  e.  ZZ ) )
43simp2bi 973 . . . . . 6  |-  ( z  e.  ZZ [ _i ]  ->  ( Re `  z )  e.  ZZ )
53simp3bi 974 . . . . . 6  |-  ( z  e.  ZZ [ _i ]  ->  ( Im `  z )  e.  ZZ )
6 gzcn 13255 . . . . . . 7  |-  ( z  e.  ZZ [ _i ]  ->  z  e.  CC )
76absvalsq2d 12200 . . . . . 6  |-  ( z  e.  ZZ [ _i ]  ->  ( ( abs `  z ) ^ 2 )  =  ( ( ( Re `  z
) ^ 2 )  +  ( ( Im
`  z ) ^
2 ) ) )
8 oveq1 6047 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x ^ 2 )  =  ( ( Re
`  z ) ^
2 ) )
98oveq1d 6055 . . . . . . . 8  |-  ( x  =  ( Re `  z )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) )
109eqeq2d 2415 . . . . . . 7  |-  ( x  =  ( Re `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) ) )
11 oveq1 6047 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
y ^ 2 )  =  ( ( Im
`  z ) ^
2 ) )
1211oveq2d 6056 . . . . . . . 8  |-  ( y  =  ( Im `  z )  ->  (
( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
1312eqeq2d 2415 . . . . . . 7  |-  ( y  =  ( Im `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) ) )
1410, 13rspc2ev 3020 . . . . . 6  |-  ( ( ( Re `  z
)  e.  ZZ  /\  ( Im `  z )  e.  ZZ  /\  (
( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
154, 5, 7, 14syl3anc 1184 . . . . 5  |-  ( z  e.  ZZ [ _i ]  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
16 eqeq1 2410 . . . . . 6  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
17162rexbidv 2709 . . . . 5  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1815, 17syl5ibrcom 214 . . . 4  |-  ( z  e.  ZZ [ _i ]  ->  ( A  =  ( ( abs `  z
) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1918rexlimiv 2784 . . 3  |-  ( E. z  e.  ZZ [
_i ]  A  =  ( ( abs `  z
) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
202, 19sylbi 188 . 2  |-  ( A  e.  S  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
21 gzreim 13262 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  ZZ [
_i ] )
22 zcn 10243 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 ax-icn 9005 . . . . . . . . . 10  |-  _i  e.  CC
24 zcn 10243 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
25 mulcl 9030 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
2623, 24, 25sylancr 645 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
_i  x.  y )  e.  CC )
27 addcl 9028 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( x  +  ( _i  x.  y
) )  e.  CC )
2822, 26, 27syl2an 464 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
2928absvalsq2d 12200 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 )  =  ( ( ( Re `  ( x  +  ( _i  x.  y ) ) ) ^ 2 )  +  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 ) ) )
30 zre 10242 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
31 zre 10242 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  RR )
32 crre 11874 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3330, 31, 32syl2an 464 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3433oveq1d 6055 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( x ^ 2 ) )
35 crim 11875 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3630, 31, 35syl2an 464 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3736oveq1d 6055 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( y ^ 2 ) )
3834, 37oveq12d 6058 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( Re
`  ( x  +  ( _i  x.  y
) ) ) ^
2 )  +  ( ( Im `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
3929, 38eqtr2d 2437 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
40 fveq2 5687 . . . . . . . . 9  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  ( abs `  z )  =  ( abs `  (
x  +  ( _i  x.  y ) ) ) )
4140oveq1d 6055 . . . . . . . 8  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
4241eqeq2d 2415 . . . . . . 7  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 )  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  =  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) ) )
4342rspcev 3012 . . . . . 6  |-  ( ( ( x  +  ( _i  x.  y ) )  e.  ZZ [
_i ]  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )  ->  E. z  e.  ZZ [ _i ] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4421, 39, 43syl2anc 643 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  E. z  e.  ZZ [ _i ]  ( ( x ^ 2 )  +  ( y ^
2 ) )  =  ( ( abs `  z
) ^ 2 ) )
4512sqlem1 21100 . . . . 5  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  S  <->  E. z  e.  ZZ [ _i ] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4644, 45sylibr 204 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  S )
47 eleq1 2464 . . . 4  |-  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  ( A  e.  S  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  S ) )
4846, 47syl5ibrcom 214 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S
) )
4948rexlimivv 2795 . 2  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S )
5020, 49impbii 181 1  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667    e. cmpt 4226   ran crn 4838   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   _ici 8948    + caddc 8949    x. cmul 8951   2c2 10005   ZZcz 10238   ^cexp 11337   Recre 11857   Imcim 11858   abscabs 11994   ZZ [ _i ]cgz 13252
This theorem is referenced by:  2sqlem5  21105  2sqlem7  21107  2sq  21113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-gz 13253
  Copyright terms: Public domain W3C validator