MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem10 Structured version   Unicode version

Theorem 2sqlem10 22672
Description: Lemma for 2sq 22674. Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem10  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Distinct variable groups:    x, w, y, z    x, A, y, z    x, B, y   
x, S, y, z   
x, Y, y
Allowed substitution hints:    A( w)    B( z, w)    S( w)    Y( z, w)

Proof of Theorem 2sqlem10
Dummy variables  a 
b  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1end 11475 . . . . 5  |-  ( B  e.  NN  <->  B  e.  ( 1 ... B
) )
21biimpi 194 . . . 4  |-  ( B  e.  NN  ->  B  e.  ( 1 ... B
) )
3 oveq2 6098 . . . . . 6  |-  ( m  =  1  ->  (
1 ... m )  =  ( 1 ... 1
) )
43raleqdv 2921 . . . . 5  |-  ( m  =  1  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
5 oveq2 6098 . . . . . 6  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
65raleqdv 2921 . . . . 5  |-  ( m  =  n  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
7 oveq2 6098 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
1 ... m )  =  ( 1 ... (
n  +  1 ) ) )
87raleqdv 2921 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... (
n  +  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
9 oveq2 6098 . . . . . 6  |-  ( m  =  B  ->  (
1 ... m )  =  ( 1 ... B
) )
109raleqdv 2921 . . . . 5  |-  ( m  =  B  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
11 elfz1eq 11458 . . . . . . . . 9  |-  ( b  e.  ( 1 ... 1 )  ->  b  =  1 )
12 1z 10672 . . . . . . . . . . . 12  |-  1  e.  ZZ
13 zgz 13990 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
1412, 13ax-mp 5 . . . . . . . . . . 11  |-  1  e.  ZZ[_i]
15 sq1 11956 . . . . . . . . . . . 12  |-  ( 1 ^ 2 )  =  1
1615eqcomi 2445 . . . . . . . . . . 11  |-  1  =  ( 1 ^ 2 )
17 fveq2 5688 . . . . . . . . . . . . . . 15  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
18 abs1 12782 . . . . . . . . . . . . . . 15  |-  ( abs `  1 )  =  1
1917, 18syl6eq 2489 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
2019oveq1d 6105 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
2120eqeq2d 2452 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
1  =  ( ( abs `  x ) ^ 2 )  <->  1  =  ( 1 ^ 2 ) ) )
2221rspcev 3070 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
2314, 16, 22mp2an 667 . . . . . . . . . 10  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
24 2sq.1 . . . . . . . . . . 11  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
25242sqlem1 22661 . . . . . . . . . 10  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
2623, 25mpbir 209 . . . . . . . . 9  |-  1  e.  S
2711, 26syl6eqel 2529 . . . . . . . 8  |-  ( b  e.  ( 1 ... 1 )  ->  b  e.  S )
2827a1d 25 . . . . . . 7  |-  ( b  e.  ( 1 ... 1 )  ->  (
b  ||  a  ->  b  e.  S ) )
2928ralrimivw 2798 . . . . . 6  |-  ( b  e.  ( 1 ... 1 )  ->  A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
3029rgen 2779 . . . . 5  |-  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)
31 2sqlem7.2 . . . . . . . . . . . . 13  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
32 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
33 nncn 10326 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  e.  CC )
3433ad2antrr 720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  n  e.  CC )
35 ax-1cn 9336 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
36 pncan 9612 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
3734, 35, 36sylancl 657 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
3837oveq2d 6106 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( 1 ... ( ( n  + 
1 )  -  1 ) )  =  ( 1 ... n ) )
3938raleqdv 2921 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( A. b  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) ) )
4032, 39mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
41 simprr 751 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  ||  m
)
42 peano2nn 10330 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
4342ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  NN )
44 simprl 750 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  m  e.  Y
)
4524, 31, 40, 41, 43, 442sqlem9 22671 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  S
)
4645expr 612 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  m  e.  Y )  ->  (
( n  +  1 )  ||  m  -> 
( n  +  1 )  e.  S ) )
4746ralrimiva 2797 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
4847ex 434 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
49 breq2 4293 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( n  +  1 )  ||  a  <->  ( n  +  1 )  ||  m ) )
5049imbi1d 317 . . . . . . . . . 10  |-  ( a  =  m  ->  (
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S )  <-> 
( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
5150cbvralv 2945 . . . . . . . . 9  |-  ( A. a  e.  Y  (
( n  +  1 )  ||  a  -> 
( n  +  1 )  e.  S )  <->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
5248, 51syl6ibr 227 . . . . . . . 8  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
53 ovex 6115 . . . . . . . . 9  |-  ( n  +  1 )  e. 
_V
54 breq1 4292 . . . . . . . . . . 11  |-  ( b  =  ( n  + 
1 )  ->  (
b  ||  a  <->  ( n  +  1 )  ||  a ) )
55 eleq1 2501 . . . . . . . . . . 11  |-  ( b  =  ( n  + 
1 )  ->  (
b  e.  S  <->  ( n  +  1 )  e.  S ) )
5654, 55imbi12d 320 . . . . . . . . . 10  |-  ( b  =  ( n  + 
1 )  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5756ralbidv 2733 . . . . . . . . 9  |-  ( b  =  ( n  + 
1 )  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5853, 57ralsn 3912 . . . . . . . 8  |-  ( A. b  e.  { (
n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) )
5952, 58syl6ibr 227 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
6059ancld 550 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  -> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) ) )
61 elnnuz 10893 . . . . . . . . 9  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
62 fzsuc 11498 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6361, 62sylbi 195 . . . . . . . 8  |-  ( n  e.  NN  ->  (
1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6463raleqdv 2921 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
65 ralunb 3534 . . . . . . 7  |-  ( A. b  e.  ( (
1 ... n )  u. 
{ ( n  + 
1 ) } ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <-> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
6664, 65syl6bb 261 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  ( A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  /\  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) ) )
6760, 66sylibrd 234 . . . . 5  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
684, 6, 8, 10, 30, 67nnind 10336 . . . 4  |-  ( B  e.  NN  ->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
69 breq1 4292 . . . . . . 7  |-  ( b  =  B  ->  (
b  ||  a  <->  B  ||  a
) )
70 eleq1 2501 . . . . . . 7  |-  ( b  =  B  ->  (
b  e.  S  <->  B  e.  S ) )
7169, 70imbi12d 320 . . . . . 6  |-  ( b  =  B  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( B  ||  a  ->  B  e.  S ) ) )
7271ralbidv 2733 . . . . 5  |-  ( b  =  B  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S )
) )
7372rspcv 3066 . . . 4  |-  ( B  e.  ( 1 ... B )  ->  ( A. b  e.  (
1 ... B ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S )
) )
742, 68, 73sylc 60 . . 3  |-  ( B  e.  NN  ->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S ) )
75 breq2 4293 . . . . 5  |-  ( a  =  A  ->  ( B  ||  a  <->  B  ||  A
) )
7675imbi1d 317 . . . 4  |-  ( a  =  A  ->  (
( B  ||  a  ->  B  e.  S )  <-> 
( B  ||  A  ->  B  e.  S ) ) )
7776rspcv 3066 . . 3  |-  ( A  e.  Y  ->  ( A. a  e.  Y  ( B  ||  a  ->  B  e.  S )  ->  ( B  ||  A  ->  B  e.  S ) ) )
7874, 77syl5 32 . 2  |-  ( A  e.  Y  ->  ( B  e.  NN  ->  ( B  ||  A  ->  B  e.  S )
) )
79783imp 1176 1  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   {cab 2427   A.wral 2713   E.wrex 2714    u. cun 3323   {csn 3874   class class class wbr 4289    e. cmpt 4347   ran crn 4837   ` cfv 5415  (class class class)co 6090   CCcc 9276   1c1 9279    + caddc 9281    - cmin 9591   NNcn 10318   2c2 10367   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433   ^cexp 11861   abscabs 12719    || cdivides 13531    gcd cgcd 13686   ZZ[_i]cgz 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-prm 13760  df-gz 13987
This theorem is referenced by:  2sqlem11  22673
  Copyright terms: Public domain W3C validator